
CS5371 Theory of Computation

Homework 5 (Suggested Solution)

1. Prove that if P = NP , then PATH is NP-complete.

Ans. If P = NP , we claim that every language in NP can be reduced to PATH in
polynomial time. Then, together with the fact that PATH is in NP, we have PATH is
NP-complete.

To prove our claim, we shall show SAT can be reduced to PATH in polynomial time.
Firstly, since P = NP , there exists a decider D for SAT that runs in polynomial time.
Based on this, consider the following TM F that computes a reduction f from SAT to
PATH :

F = “On input 〈φ〉,
1. Run D on 〈φ〉.
2. If D accepts 〈φ〉, construct a graph G containing two vertices s and t, with an edge
{s, t} joining them.

3. Otherwise, if D rejects 〈φ〉, construct a graph G with two isolated vertices s and t.

4. In either case, output 〈G, s, t〉.”

It is easy to check that 〈φ〉 ∈ SAT ⇔ 〈G, s, t〉 ∈ PATH. Also, the above reduction takes
polynomial time. This completes the proof of the claim.

2. Let LPATH denote the language:

LPATH = {〈G, s, t, k〉 | G contains a simple path of length at least k from s to t}.

Ans. Firstly, LPATH is in NP because a certificate for 〈G, s, t, k〉 simply consists of the
sequence of edges in a simple path from s to t with length at least k, so that for this kind
of certificate, we can find a corresponding polynomial time DTM verifier.

To further show that every NP problem can be reduced LPATH in polynomial time,
we shall reduce HAMPATH to LPATH. Consider the following TM F that computes a
reduction f from HAMPATH to LPATH :

F = “On input 〈G, s, t〉,
1. Output 〈G, s, t, n− 1〉, where n is the number of vertices in G.”

Firstly, if there is a hamiltonian path from s to t in G, the path would have length n− 1
so that 〈G, s, t, n− 1〉 is in LPATH. On the other hand, if 〈G, s, t, n− 1〉 is in LPATH, the
simple path from s to t has length n− 1, so that it must be hamiltonian. Thus,

〈G, s, t〉 ∈ HAMPATH ⇔ 〈G, s, t, n− 1〉 ∈ LPATH.

Also, it is obvious that the above reduction runs in polynomial time. This implies HAM-
PATH is polynomial-time reducible to LPATH. Thus, LPATH is NP-complete.

1



3. Let S be a finite set and C = {C1, C2, . . . , Ck} be a collection of subsets of S, for some
k > 0. We say S is two-colorable with respect to C if we can color the elements of S in
either red or blue, such that each subset Ci contains at least a red element and at least a
blue element.

Let 2COLOR denote the language:

2COLOR = {〈S, C〉 | S is two-colorable with respect to C}.

Show that 2COLOR is NP-complete.

Ans. It is easy to show that 2COLOR is in NP (how?). To show that every NP language
can be reduced to 2COLOR in polynomial time, we shall use reduction from 6=SAT.

Consider the following TM F that computes a reduction from 6=SAT to 2COLOR:

F = “On input formula 〈ψ〉,
1. For each variable x in ψ, create two variables sx and s′x in S.

Also, create a subset {sx, s
′
x} of C.

2. For each clause γi in ψ, create a subset ci of C such that

(i) if x ∈ γi, sx ∈ ci;

(ii) if ¬x ∈ γi, s′x ∈ ci.

3. Output 〈S,C〉.”
Firstly, if there is a satisfying not-all-equal assignment (say, A) for ψ, it is easy to obtain
a 2-coloring for the variables in S as follows: If x is assigned true in A, we color sx to red
and s′x to blue; otherwise, we color sx to blue and s′x to red. Under this coloring, each
subset {sx, s

′
x} must contain 2 colors, while each subset ci also contains 2 colors (because

γi is not-all-equal under the assignment A). Thus, 〈S,C〉 is in 2COLOR.

On the other hand, if 〈S,C〉 is in 2COLOR, we can obtain a satisfying not-all-equal as-
signment for ψ as follows: Fix a 2-coloring scheme for 〈S, C〉. If sx is colored red, assign x
to true in ψ. Otherwise, assign x to false. Since ci contains two colors, the corresponding
clause γi in ψ must be not-all-equal under the above assignment. This implies that every
clause in ψ will be not-all-equal, so that ψ has a satisfying not-all-equal assignment.

In summary, we have

〈ψ〉 ∈ 6=SAT ⇔ 〈S, C〉 ∈ 2COLOR.

Also, the above reduction takes polynomial time to run. Thus, 6=SAT ≤P 2COLOR, so
that 2COLOR is NP-complete.

4. (Further Studies: No marks) Let φ be a cnf-formula. An assignment to the variables of φ
is called not-all-equal if in each clause, at least one literal is TRUE and at least one literal
is FALSE.

Let 6=SAT be the language:

6=SAT = {〈φ〉 | φ is a cnf-formula which has a satisfying not-all-equal assignment}.

Show that 6=SAT is NP-complete.

2



Ans. It is easy to check that 6=SAT is in NP. It remains to show that every NP language
is polynomial-time reducible to 6=SAT. To do so, we shall reduce CNF-SAT to 6=SAT.

Before that, we first notice that for any formula φ, if A is a satisfying not-all-equal assign-
ment, then the negation of A is also a satisfying not-all-equal assignment.1 For instance,
let

φ = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ ¬z).

Then, A = (x = 0, y = 1, z = 0) is a satisfying not-all-equal assignment. On the other
hand, the negation of A, which is (x = 1, y = 0, z = 1), is also a satisfying not-all-equal
assignment.

Now, the reduction is as follows. Let

Ci = (x1 ∨ x2 ∨ · · · ∨ xk)

be the ith clause in an instance of CNF-SAT. We shall replace clause Ci with two clauses

Di = (x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ zi) and Ei = (¬zi ∨ xk ∨ b),

where zi is a new variable corresponding to Ci, and b is a global variable shared by other
Dj’s and Ej’s.

Let φ be the original cnf-formula, and ψ be the transformed cnf-formula. First, if the
original formula φ is satisfiable, it is easy to obtain a satisfying not-all-equal assignment
for the transformed formula ψ as follows:

(a) Use the same assignment for the variables that appear in φ;

(b) For clause Di, set zi = ¬(x1 ∨ x2 ∨ · · · ∨ xk−1);

(c) Set b to be false;

Under this assignment, for each i, the clause Di must be not-all-equal. Also, we know that
either xk is true or (x1 ∨ x2 ∨ · · · ∨ xk−1) is true (why?). The latter case implies that zi

is false. Then, in both cases, we know that Ei must be not-all-equal (because b is set to
false). Thus, 〈φ〉 is in CNF-SAT implies 〈ψ〉 is in 6=SAT.

On the other hand, if 〈ψ〉 is in 6=SAT, let A be a satisfying not-all-equal assignment for
ψ. If b is set to false in A, we claim that with the same assignment for the variables that
appear in φ, φ will become satisfied. Consider Ci: if xk is true, Ci is satisfied immediately.
Otherwise, we know that Ei is not-all-equal, so that zi is true. In this case, ¬zi is false in
Di so that (x1 ∨ x2 ∨ · · · ∨ xk−1) must be true. This in turn would imply Ci is satisfied in
φ. In summary, if b is set to false in A, then φ is satisfiable.

Next, if b is set to true in A, we know that the negation of A is also a satisfying not-all-
equal assignment for ψ. Then, we can proceed with the same reasoning and show that φ
is also satisfiable (using the negated assignment).

Thus, 〈ψ〉 is in 6=SAT implies 〈φ〉 is in CNF-SAT, so that

〈φ〉 ∈ CNF-SAT ⇔ 〈ψ〉 ∈ 6=SAT.

Finally, the reduction takes polynomial time to run, so that we have proven CNF-SAT ≤P

6=SAT. This completes the proof.

1The proof is very straightforward: a literal is assigned true in A if and only if it is assigned false in the
negation of A. Since A guarantees each clause has at least one false, the negation of A thus guarantees each
clause has at least one true so that it is also satisfying. Moreover, A guarantees each clause has at least one true,
so that the negation of A guarantees each clause must be not-all-equal.

3


