CS5371 Theory of Computation

Homework 5 Due: 3:20 pm, January 4, 2007 (before class)

- 1. (25%) Prove that if P = NP, then *PATH* is NP-complete.¹
- 2. (25%) Let *LPATH* denote the language:

 $LPATH = \{ \langle G, s, t, k \rangle \mid G \text{ contains a simple path of length at least } k \text{ from } s \text{ to } t \}.$

Show that LPATH is NP-complete. (Hint: Reduction from HAMPATH.)

3. Let ϕ be a cnf-formula. An assignment to the variables of ϕ is called *not-all-equal* if in each clause, at least one literal is TRUE and at least one literal is FALSE.

Let $\neq SAT$ be the language:

 $\neq SAT = \{ \langle \phi \rangle \mid \phi \text{ is a cnf-formula which has a satisfying not-all-equal assignment} \}.$

For example,

- $\phi_1 = (u \lor v) \land (v \lor x)$ is in $\neq SAT$;
- $\phi_2 = (u \lor v) \land (\neg u \lor v)$ is not in $\neq SAT$.

(25%) Show that $\neq SAT$ is NP-complete.

Hint: Reduction from CNF-SAT by replacing each clause C_i

$$(x_1 \lor x_2 \lor \cdots \lor x_k)$$

with the two clauses

 $(x_1 \lor x_2 \lor \cdots \lor x_{k-1} \lor z_i)$ and $(\neg z_i \lor x_k)$

4. (25%) Let S be a finite set and $C = \{C_1, C_2, \ldots, C_k\}$ be a collection of subsets of S, for some k > 0. We say S is *two-colorable* with respect to C if we can color the elements of S in either red or blue, such that each subset C_i contains at least a red element and at least a blue element.

Let 2COLOR denote the language:

 $2COLOR = \{ \langle S, C \rangle \mid S \text{ is two-colorable with respect to } C \}.$

Show that 2COLOR is NP-complete. (Reduction from which NP-complete problem??)

- 5. (Further Studies: No marks) If P = NP, will all languages in P become NP-complete?
- 6. (Further Studies: No marks) Let $CNF_k = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable cnf-formula where each variable appears in at most k places}\}$.
 - (a) Show that $CNF_2 \in P$.
 - (b) Show that CNF_3 is NP-complete.

¹An immediate corollary of this: If *PATH* is not NP-complete, then $P \neq NP$.