CS5371 Theory of Computation

Homework 4 (Suggested Solution)

- 1. Ans. Suppose on the contrary that T is decidable. Let R be its decider. Then, the following TM Q is a decider for A_{TM} :
 - Q = "On input $\langle M, w \rangle$,
 - 1. Construct a TM M' as follows:
 - M' = "On input x,
 - 1. If $x \neq 011$, accept.
 - 2. Run M on w.
 - 3. If M accepts w, *accept*."
 - 2. Run R to decide if $\langle M' \rangle$ is in T.
 - 3. If yes (i.e., R accepts), accept.
 - 4. Else, reject."

It is easy to check that Q runs in finite steps. Also, in Step 1, M' has the property that:

- (i) If M accepts $w, L(M') = \Sigma^*$, so that $\langle M' \rangle \in T$.
- (ii) Else, $L(M') = \Sigma^* \{011\}$, so that $\langle M' \rangle \notin T$.

So, if Q accepts $\langle M, w \rangle$, it must mean that R accepts $\langle M' \rangle$, which implies that $\langle M' \rangle \in T$, which implies M accepts w. On the other hand, if Q rejects $\langle M, w \rangle$, R rejects $\langle M' \rangle$, which in turn implies that M does not accept w.

Thus, Q is a decider for A_{TM} , and a contradiction occurs. So, we conclude that T is undecidable.

- 2. In the *silly Post Correspondence Problem*, we see that if a set of dominoes S is in SPCP if and only if S contains a piece whose top string matches exactly the bottom string. Thus, we can easily design a TM that uses finite steps to check such a piece exists. So, SPCP is decidable.
- 3. (\Rightarrow) If $A \leq_m A_{TM}$, then A is Turing-recognizable because A_{TM} is Turing recognizable.

(\Leftarrow) If A is Turing-recognizable, then there exists some TM R that recognizes A. That is, R would receive an input w and accept if w is in A (otherwise R does not accept). To show that $A \leq_m A_{TM}$, we design a TM that does the following: On input w, writes $\langle R, w \rangle$ on the tape and halts. It is easy to check that $\langle R, w \rangle$ is in A_{TM} if and only if w is in A. Thus, we get a mapping reduction of A to A_{TM} .

4. (\Rightarrow) If $A \leq_m 0^*1^*$, then A is decidable because 0^*1^* is a decidable language.

(\Leftarrow) If A is decidable, then there exists some TM R that decides A. That is, R would receive an input w and accept if w is in A, reject if w is not in A. To show $A \leq_m 0^*1^*$, we design a TM Q that does the following: On input w, runs R on w. If R accepts, outputs 01; otherwise, outputs 10. It is easy to check that:

$$w \in A \Leftrightarrow$$
 output of $Q \in 0^*1^*$.

Thus, we obtain a mapping reduction of A to 0^*1^* .

- 5. Let $J = \{w \mid \text{either } w = 0x \text{ for some } x \in A_{TM}, \text{ or } w = 1y \text{ for some } y \notin A_{TM} \}.$
 - We first show that $A_{TM} \leq_m J$. To do so, we design the following TM Q: On input $\langle M, w \rangle$, write 0 followed by $\langle M, w \rangle$ in the tape and halts. It is easy to check that:

 $\langle M, w \rangle \in A_{TM} \Leftrightarrow$ output of $Q \in J$.

Thus, we obtain a mapping reduction of A_{TM} to J.

• We next show that $A_{TM} \leq_m \overline{J}$. To do so, we design the following TM R: On input $\langle M, w \rangle$, write 1 followed by $\langle M, w \rangle$ in the tape and halts. It is easy to check that:

$$\langle M, w \rangle \in \overline{A_{TM}} \Leftrightarrow \text{ output of } R \in J.$$

Equivalently, we have:

$$\langle M, w \rangle \in A_{TM} \Leftrightarrow \text{ output of } R \in \overline{J}.$$

Thus, we obtain a mapping reduction of A_{TM} to \overline{J} .

• Since $A_{TM} \leq_m J$, we have $\overline{A_{TM}} \leq_m \overline{J}$. This shows that \overline{J} is non-Turing-recognizable because A_{TM} is non-Turing-recognizable.

Similarly, since $A_{TM} \leq_m \overline{J}$, we have $\overline{A_{TM}} \leq_m J$. So, this shows that J is non-Turing-recognizable.