CS5371 Theory of Computation

Homework 2 (Suggested Solution)

1. Ans. We completed the proof by showing Claim 1 and Claim 2 as follows:

Claim 1. If s is a string accepted by D, then V_{0} derives s.
Proof. Let $k=|s|$. When $k=0, s=\varepsilon$, which is accepted by D only if q_{0} is an accept state. In this case, the CFG contains the rule $V_{0} \rightarrow \varepsilon$ so that V_{0} derives s.

When $k \geq 1$, let $s=s_{1} s_{2} \cdots s_{k}$. Since s is accepted by D, there will be a sequence of states $q_{i_{0}}, q_{i_{1}}, \ldots, q_{i_{k}}$ in D such that $q_{i_{0}}=q_{0}, q_{i_{k}}$ is an accept state, and for each $j, q_{i_{j}}=\delta\left(q_{i_{j-1}}, s_{i}\right)$. By the construction of CFG, we know that $V_{i_{0}}=V_{0}$ is the start variable, and there is a rule $V_{i_{k}} \rightarrow \varepsilon$. Also, there is a rule $V_{i_{j-1}} \rightarrow s_{i} V_{i_{j}}$ for each j. This implies that

$$
V_{0} \Rightarrow s_{1} V_{i_{1}} \Rightarrow s_{1} s_{2} V_{i_{2}} \Rightarrow \cdots \Rightarrow s_{1} s_{2} \cdots s_{k} V_{i_{k}} \Rightarrow s_{1} s_{2} \cdots s_{k}
$$

In other words, V_{0} derives s.
Claim 2. If V_{0} derives s, then s is a string accepted by D.
Proof. Let $k=|s|$. When $k=0, s=\varepsilon$, which is derived from V_{0} only if there is a rule $V_{0} \rightarrow \varepsilon$. In this case, q_{0} is an accept state in D, so s is accepted by D.
When $k \geq 1$, let $s=s_{1} s_{2} \cdots s_{k}$. Since s is derived from V_{0}, and since each rule replaces a variable by either (i) a terminal followed by another variable, or (ii) an empty string, the derivation of s must be in the following form:

$$
V_{0} \Rightarrow s_{1} V_{i_{1}} \Rightarrow s_{1} s_{2} V_{i_{2}} \Rightarrow \cdots \Rightarrow s_{1} s_{2} \cdots s_{k} V_{i_{k}} \Rightarrow s_{1} s_{2} \cdots s_{k}
$$

for some $i_{1}, i_{2}, \ldots, i_{k}$. By letting $i_{0}=0$, the above form implies that $q_{i_{k}}$ is an accept state, and for each $j, q_{i_{j}}=\delta\left(q_{i_{j-1}}, s_{i}\right)$. Since $q_{i_{0}}, q_{i_{1}}, \ldots, q_{i_{k}}$ is exactly the sequence of states visited in D when we process s, therefore s is accepted by D.
2. (a) Ans. A string in the complement of the language $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}$ must be in one of the following forms: (i) contains a substring ba; or (ii) equals to $\mathrm{a}^{i} \mathrm{~b}^{j}$ for some $i \neq j$. Accordingly, the CFG we use is as follows:

$$
\begin{aligned}
S & \rightarrow S_{1} \mid S_{2} \\
S_{1} & \rightarrow \mathrm{ba}\left|X S_{1}\right| S_{1} X \\
X & \rightarrow \mathrm{a} \mid \mathrm{b} \\
S_{2} & \rightarrow A C \mid C B \\
A & \rightarrow \mathrm{a} A \mid \mathrm{a} \\
B & \rightarrow \mathrm{~b} B \mid \mathrm{b} \\
C & \rightarrow \mathrm{ab} \mid \mathrm{aCb}
\end{aligned}
$$

(b) Ans. A string in the language

$$
\left\{x_{1} \# x_{2} \# \cdots \# x_{k} \mid k \geq 1, \text { each } x_{i} \in\{\mathrm{a}, \mathrm{~b}\}^{*}, \text { and for some } i \text { and } j, x_{i}=x_{j}^{R}\right\}
$$

must be in one of the following forms: (i) contains a palindrome x_{i} for some i; (ii) contains distinct i and j such that $x_{i}=x_{j}^{R}$. Accordingly, the CFG we use is as follows:

$$
\begin{aligned}
S & \rightarrow S_{1} \mid S_{2} \\
S_{1} & \rightarrow P|X \# P| P \# X \\
P & \rightarrow \mathrm{a} P \mathrm{a}|\mathrm{~b} P \mathrm{~b}| \mathrm{a}|\mathrm{~b}| \varepsilon \\
X & \rightarrow \mathrm{a}|\mathrm{~b}| \# \mid \varepsilon \\
S_{2} & \rightarrow M|X \# M| M \# X \\
M & \rightarrow \mathrm{a} M \mathrm{a}|\mathrm{~b} M \mathrm{~b}| \# X \#
\end{aligned}
$$

3. Ans. An equivalent CFG in Chomsky normal form is as follows:

$$
\begin{aligned}
& S \rightarrow A B|B A| B B|B C| D D \mid \varepsilon \\
& A \rightarrow A B|B A| B B|B C| D D \\
& B \rightarrow D D \\
& C \rightarrow A B \\
& D \rightarrow 0
\end{aligned}
$$

4. Ans. A string is in the language $C=\left\{x \# y \mid x, y \in\{0,1\}^{*}\right.$ and $\left.x \neq y\right\}$ if and only if $|x| \neq|y|$, or for some i, the i th bit of x is different with the i th bit of y. Accordingly, we design a CFG for C, thus showing that C is context-free:

$$
\begin{aligned}
S & \rightarrow M|N 1 A| P 0 A \\
M & \rightarrow X M X \mid U \\
X & \rightarrow 0 \mid 1 \\
U & \rightarrow \# 0 A|\# 1 A| A 0 \# \mid A 1 \# \\
A & \rightarrow 0 A|1 A| \varepsilon \\
N & \rightarrow X N X \mid 0 A \# \\
P & \rightarrow X P X \mid 1 A \#
\end{aligned}
$$

In the above CFG, A generates strings of any length, M generates x and y of unequal length by first matching characters in the shorter of them with the longer one, and then generates the remaining characters of the longer (using U). N generates strings in the form of $\{0,1\}^{i} 0\{0,1\}^{*} \#\{0,1\}^{i}$ so that when combined with $1 A$, we obtain a string with i th bit of x is 0 , while i th bit of y is 1 . P generates strings similar to N, except the i th bit is 1 .
5. (a) Ans. Assume that the language is context-free. Let p be the pumping length. Consider the string $s=0^{p} 1^{p} 0^{p} 1^{p}$ which is in the language with length at least p.
Suppose that s is partitioned into $s=u v x y z$ with $|v x y| \leq p$ and $|v y|>0$. There are two cases:
(i) Both v and y contains only one type of characters.
(ii) Either v or y contains two types of characters.

For the first case, if we consider s as four maximal substrings with contiguous 0 s or 1 s , we can see that deleting v and y from s can change the number of 0 s or 1 s in one or two such substrings, so that $u x z$ is not in the language.
For the second case, since $|v x y| \leq p$, we see that v and y cannot both contain two types of characters. Without loss of generality, let v to be the string with two types of characters. Then, the string uvvxyyz will be in the form $0^{a} 1^{b} 0^{c} 1^{d} 0^{e} 1^{f}$, so that it is not in the language.
Thus, we find a string in the language which does not satisfy the pumping lemma. Contradiction occurs, so that we conclude the language is not context-free.
(b) Ans. Assume that the language is context-free. Let p be the pumping length. Consider the string $s=0^{p} 1^{p} \# 0^{p} 1^{p}$ which is in the form $x_{1} \# x_{1}$. Thus, s is in the language, and also with length at least p.
Suppose that s is partitioned into $s=u v x y z$ with $|v x y| \leq p$ and $|v y|>0$. There are two cases:
(i) One of v or y contains \#
(ii) Both v and y does not contain \#

For case (i), the string $u x z$ must not be in the language, since it does not contain \#. For case (ii), since v and y are within p characters, deleting v and y will not delete the same characters in the corresponding portions of x_{1} in s. As a result, the string $u x z$ must not be in the language.
Thus, we find a string in the language which does not satisfy the pumping lemma. Contradiction occurs, so that we conclude the language is not context-free.

