
1

CS5314
Randomized Algorithms

Lecture 9: Moments and Deviation
(Randomized Median)



2

•Compute the median of n numbers
•In fact, there is a deterministic

algorithm, which runs in optimal O(n)
time …[so, how can we improve this??]

•We will see a simpler randomized
algorithm which also runs in O(n) time,
but with a smaller hidden constant

Objectives



3

Computing the Median
Definition: Let S be a set of n numbers.

If x is the jth smallest number in S, we
say the rank of x is j

Definition: In a set of n numbers, median
is the number whose rank is d n/2 e

Ex: S = { 1, 3, 4, 6, 8, 13, 15, 22 }
Median = 6



4

Input:

Randomized Median (idea)

S

Step 1: Find two good “guards”d and u,
so as to enclose the median m

d u

· m ¸ m



5

Randomized Median (idea)
Step 2: Use d and u to filter out those

numbers which cannot be m

S C

Candidate median
after filtering

filtering

Step 3: If C is small enough, find m by
brute-force



6

Step 1: Finding Guards
(the only step with randomization)

(i) Randomly pick dn3/4e numbers from S,
independently and uniformly (with replacement)

(ii) Let R = multi-set of such numbers
(iii) Sort R
(iv) Set d = number in R whose rank

is bn3/4/2 –n1/2c

Details of the Algorithm



7

Step 1: Finding Guards [cont.]

(v) Set u = number in R whose rank
is bn3/4/2 + n1/2c

(vi) Scan S to check if d and u encloses m
•if so, proceed to Step 2;
•if not, output FAIL immediately

Details of the Algorithm



8

What happens in Step 1 ?

S R

“miniature”of S

sorted R

median
of Rd u



9

Step 2: Filtering

(i) Scan S
(ii) Let C = set of numbers in S

between d and u
(iii) Check if C is “small”enough

•if C has at most 4n3/4 numbers,
proceed to Step 3;

•else, output FAIL immediately

Details of the Algorithm



10

Step 3: Finding median by brute force

(i) Let p = #numbers in S less than d
(obtained in Step 1)

(ii) Sort C
(iii) Output the number in C whose rank is

bn/2 - pc  which must be the median

Details of the Algorithm



11

Time and Correctness

Lemma: The randomized median always
terminate in O(n) time. If it does not
output FAIL, then the output number is
the correct median

Proof:
(Time) Each step takes O(n) time
(Correctness) If it does not output FAIL,

C always contains the median



12

The algorithm will FAIL if and only if one of
the following events occurs:

E1 : d median m
E2 : u median m
E3 : C has more than 4n3/4 numbers

Thus, Pr(FAIL) = Pr(E1[ E2[ E3)

Pr(E1) + Pr(E2) + Pr(E3)

Failure Probability



13

Question: When will d median m ?

Bounding Pr(E1)

sorted R

the portion with
value m

the portion with
value m

d
median

of R

Answer: if and only if has less than
bn3/4/2 –n1/2c numbers



14

Let Y = size of

Pr(E1) = Pr(Y bn3/4/2 –n1/2c)

Let Yj be an indicator that :

Yj = 1 if jth number of R median
Yj = 0 otherwise

 Y = Y1 + Y2 + …+ Ydn3/4e

Bounding Pr(E1)



15

If we can find E[Y] and Var[Y], then we can
use Chebyshev inequality to bound Pr(E1)

Note: E[Y1] = Pr(Y1 = 1)
 1/2

 E[Y] dn3/4e /2
Var[Y] dn3/4e /4

Bounding Pr(E1)



16

Thus,
Pr(E1) = Pr(Y bn3/4/2 –n1/2c)

Pr(Y n3/4/2 –n1/2)
Pr(Y E[Y] –n1/2)
Pr( |Y - E[Y] | n1/2)
Var[Y] / (n1/2)2

= O( 1 / n1/4 ) …which is small for large n

Similarly, Pr(E2) = O( 1 / n1/4 )

Bounding Pr(E1)



17

Question: When will C has more than 4n3/4

numbers?

Bounding Pr(E3)

Answer: Either one of the following events
occurs:

A : more than 2n3/4 numbers in C has value
median m

B : more than 2n3/4 numbers in C has value
median m

 Pr(E3) Pr(A[ B) Pr(A) + Pr(B)



18

When A happens :

Bounding Pr(A)

sorted C

the portion with
value m

d u

the rank of u (in S) = n/2 + size of
n/2 + 2n3/4



19

Consequently :

Bounding Pr(A)
rank of any number

in this portion
n/2 + 2n3/4

and we will soon show that this is unlikely

sorted R

median
of Rd u



20

Let Z = # chosen numbers in R whose rank is
at least n/2 + 2n3/4 = size of

So, Pr(A) Pr(Z bn3/4/2 –n1/2c)

Let Zj be an indicator that :

Zj = 1 if jth number of R is in
Zj = 0 otherwise

 Z = Z1 + Z2 + …+ Zdn3/4e

Bounding Pr(A)



21

Next, we want to find E[Z] and Var[Z], so
that we can use Chebyshev inequality to
bound Pr(A)

It is easy to check that
E[Z1] = Pr(Z1 = 1)

= 1/2 - 2/n1/4 + 1/n

 E[Z] = dn3/4e/2 - 2n1/2 + n1/4

Var[Z] dn3/4e /4

Bounding Pr(A)



22

Thus,
Pr(A) Pr(Z bn3/4/2 –n1/2c)

Pr(Z n3/4/2 –n1/2 - 1)
Pr(Z E[Z] + n1/2 –1 –n1/4)
Pr( |Z - E[Z] | n1/2 –1 –n1/4)
Var[Z] / (n1/2 - 1 –n1/4)2

= O( 1 / n1/4 ) …which is small for large n

Similarly, Pr(B) = O( 1 / n1/4 )

Bounding Pr(A)



23

Thus,
Pr(E3) Pr(A) + Pr(B) = O( 1 / n1/4 )

Conclusion:
Pr(FAIL) = Pr(E1[ E2[ E3)

Pr(E1) + Pr(E2) + Pr(E3)
= O( 1 / n1/4 )

 Algorithm succeeds with high probability

Bounding Pr(FAIL)


