CS5314 Randomized Algorithms

Lecture 8: Moments and Deviations (Common Variance, Chebyshev Inequality)

Objectives

- Variances of $\operatorname{Bin}(n, p)$ and Geo(p)
- Chebyshev's Inequality

Variance of Binomial RV

Lemma: Let X be a binomial random variable with parameters n and p. Then,

$$
\operatorname{Var}[X]=n p(1-p)
$$

How do we get that?
Recall: $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]$

$$
=E\left[X^{2}\right]-(E[X])^{2}
$$

First Proof (computing E[X²])

$$
\begin{aligned}
& E\left[X^{2}\right]=\sum_{0 \leq j \leq n} j^{2} \operatorname{Pr}(X=j) \\
& =\Sigma_{0 \leq j \leq n} j^{2} C_{j}^{n} p^{j}(1-p)^{n-j} \\
& =\sum_{0 \leq j \leq n}(j(j-1)+j) C_{j}^{n} p^{j}(1-p)^{n-j} \\
& =\sum_{2 \leq j \leq n} j(j-1) C_{j}^{n} p^{j}(1-p)^{n-j} \\
& \quad+\sum_{1 \leq j \leq n} j C_{j}^{n} p^{j}(1-p)^{n-j}
\end{aligned}
$$

By expanding C_{j}^{n} term, we get:

First Proof (computing E[X²])

$$
\begin{aligned}
& E\left[X^{2}\right] \\
& =n(n-1) p^{2} \sum_{2 \leq j \leq n} C_{j-2}^{n-2} p^{j-2}(1-p)^{n-j} \\
& +n p \sum_{1 \leq j \leq n} C_{j-1}^{n-1} p^{j-1}(1-p)^{n-j} \\
& =n(n-1) p^{2}(p+(1-p))^{n-2}+n p(p+(1-p))^{n-1} \\
& =n(n-1) p^{2}+n p
\end{aligned}
$$

First Proof (computing E[X²])

Since $\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}$, we have:

$$
\begin{aligned}
\operatorname{Var}[X] & =n(n-1) p^{2}+n p-(n p)^{2} \\
& =n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2} \\
& =n p-n p^{2} \\
& =n p(1-p)
\end{aligned}
$$

Second Proof (using indicator)

Binomial r.v. $X=\operatorname{Bin}(n, p)$ can be written as the sum of n independent indicator, X_{1}, X_{2}, \ldots, X_{n}, each succeeds with probability p

That is, $X=X_{1}+X_{2}+\ldots+X_{n}$
So, $\operatorname{Var}[X]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\ldots+\operatorname{Var}\left[X_{n}\right]$

$$
=n \operatorname{Var}\left[X_{1}\right]
$$

Second Proof (using indicator)

$$
\begin{aligned}
\operatorname{Var}\left[X_{1}\right] & =E\left[\left(X_{1}-E\left[X_{1}\right]\right)^{2}\right] \\
& =(1-p)^{2} \operatorname{Pr}\left(X_{1}=1\right)+(0-p)^{2} \operatorname{Pr}\left(X_{1}=0\right) \\
& =(1-p)^{2} p+p^{2}(1-p) \\
& =p(1-p)(1-p+p)=p(1-p)
\end{aligned}
$$

Thus,

$$
\operatorname{Var}[X]=n \operatorname{Var}\left[X_{1}\right]=n p(1-p)
$$

Variance of Geometric RV

Lemma: Let X be a geometric random variable with parameter p. Then,

$$
\operatorname{Var}[X]=(1-p) / p^{2}
$$

How do we get that?

First Proof (computing E[X²])

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{j \geq 0} j^{2} \operatorname{Pr}(X=j) \\
& =\sum_{j \geq 0} j^{2} p(1-p)^{j-1} \\
& =[p /(1-p)] \times \sum_{j \geq 0} j^{2}(1-p)^{j}
\end{aligned}
$$

To get $E\left[X^{2}\right]$, it remains to compute the value of $\Sigma_{j \geq 1} \mathrm{j}^{2}(1-p)^{\mathrm{j}}$

Before that, let's look at some equalities

First Proof (computing E[X²])

For $|x|<1$,
(a) $\quad 1 /(1-x)=\Sigma_{j \geq 0} x^{j}$
(b) By differentiating (a), we get

$$
1 /(1-x)^{2}=\sum_{j \geq 0} j^{x^{j-1}}
$$

(c) By differentiating (b), we get

$$
2 /(1-x)^{3}=\Sigma_{j \geq 0} j(j-1) x^{j-2}
$$

First Proof (computing E[X²])

Using the previous equalities,

$$
\begin{aligned}
& \Sigma_{j \geq 0} \mathrm{j}^{2} x^{j} \\
& =\sum_{\mathrm{j} \geq 0} j(\mathrm{j}-1) x^{j}+\sum_{\mathrm{j} \geq 0} \mathrm{j} x^{\mathrm{j}} \\
& =2 x^{2} /(1-x)^{3}+x /(1-x)^{2} \\
& =\left(2 x^{2}+x(1-x)\right) /(1-x)^{3} \\
& =\left(x^{2}+x\right) /(1-x)^{3}
\end{aligned}
$$

First Proof (computing E[$\left.X^{2}\right]$)

So,

$$
\begin{aligned}
& E\left[X^{2}\right]=[p /(1-p)] \times \sum_{j \geq 0} j^{2}(1-p)^{j} \\
& =[p /(1-p)] \times\left((1-p)^{2}+(1-p)\right) /(1-(1-p))^{3} \\
& =[p /(1-p)] \times((1-p)(2-p)) / p^{3} \\
& =(2-p) / p^{2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[X^{2}\right]-(E[X])^{2} \\
& =(2-p) / p^{2}-(1 / p)^{2}=(1-p) / p^{2}
\end{aligned}
$$

Second Proof (by memory-less property)

Let Y be a random variable such that $Y=1$ if the first trial succeeds, and $y=0$ if the first trial fails

Then,

$$
\begin{aligned}
E\left[X^{2}\right]= & \operatorname{Pr}(Y=1) E\left[X^{2} \mid Y=1\right] \\
& +\operatorname{Pr}(Y=0) E\left[X^{2} \mid Y=0\right] \\
= & p E\left[X^{2} \mid Y=1\right]+(1-p) E\left[X^{2} \mid Y=0\right] \\
& =p+(1-p) E\left[X^{2} \mid Y=0\right]
\end{aligned}
$$

Second Proof (by memory-less property)
We want to get $\mathrm{E}\left[X^{2} \mid \mathrm{Y}=0\right]$...
Let $Z=\#$ remaining trials until first success
In this case $(Y=0)$, we have $X=Z+1$

$$
\text { So, } \begin{gathered}
E\left[X^{2} \mid Y=0\right]=E\left[(Z+1)^{2}\right] \quad . .[w h y ?] \\
=E\left[Z^{2}+2 Z+1\right]=E\left[Z^{2}\right]+2 E[Z]+1
\end{gathered}
$$

But from the memory-less property,

$$
E\left[Z^{2}\right]=E\left[X^{2}\right] \text { and } E[Z]=E[X]
$$

Second Proof (by memory-less property)

$$
\text { So, } \begin{aligned}
E\left[X^{2}\right] & =p+(1-p) E\left[X^{2} \mid Y=0\right] \\
& =p+(1-p)\left(E\left[X^{2}\right]+2 E[X]+1\right) \\
& =p+(1-p)\left(E\left[X^{2}\right]+2 / p+1\right)
\end{aligned}
$$

Rearranging terms,

$$
\begin{aligned}
p E\left[X^{2}\right] & =p+2(1-p) / p+(1-p) \\
& =1+(2-2 p) / p=(2-p) / p
\end{aligned}
$$

Again, $E\left[X^{2}\right]=(2-p) / p^{2}$

$$
\rightarrow \operatorname{Var}[X]=(1-p) / p^{2} \text { as before }
$$

Chebyshev Inequality

Theorem: For any positive a,

$$
\operatorname{Pr}(|X-E[X]| \geq a) \leq \operatorname{Var}[X] / a^{2}
$$

Proof

By using Markov Inequality!!!

$$
\begin{aligned}
& \operatorname{Pr}(|X-E[X]| \geq a) \\
& =\operatorname{Pr}\left((X-E[X])^{2} \geq a^{2}\right) \\
& \leq E\left[(X-E[X])^{2}\right] / a^{2} \\
& =\operatorname{Var}[X] / a^{2}
\end{aligned}
$$

[by Markov inequality]

Chebyshev Inequality (other variations)

Corollary: For any positive r,

$$
\operatorname{Pr}(|X-E[X]| \geq r \sigma[X]) \leq 1 / r^{2}
$$

Corollary: For any positive r,

$$
\operatorname{Pr}(|X-E[X]| \geq r E[X]) \leq \operatorname{Var}[X] /(r E[X])^{2}
$$

Markov vs Chebyshev

- When applying Chebyshev :

1. X can take on negative values
2. Need $\operatorname{Var}[X]$ to get the bound
3. Often give better bounds than Markov (since it is based on more information)

Markov vs Chebyshev
 (Example 1)

Suppose we flip a fair coin n times
Question: Can we bound the probability of more than $3 n / 4$ heads?
Let $X=$ number of heads. So, $E[X]=n / 2$ By Markov Inequality,

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 3 n / 4) \leq E[X] /(3 n / 4) \\
& =(n / 2) /(3 n / 4)=2 / 3
\end{aligned}
$$

Markov vs Chebyshev (Example 1)

Let's use Chebyshev Inequality instead:
Again, $X=$ number of heads

$$
\text { So, } E[X]=n / 2 \text { and } \operatorname{Var}[X]=n / 4 \ldots[w h y ?]
$$

Then, we have

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 3 n / 4) \\
& \leq \operatorname{Pr}(|X-E[X]| \geq n / 4) \ldots[\text { why? }] \\
& \leq \operatorname{Var}[X] /(n / 4)^{2} \\
& =4 / n \quad \ldots \text { much better bound than } 2 / 3!!!
\end{aligned}
$$

Markov vs Chebyshev (Example 2)

Let us revisit Coupon Collector's problem:
There are a total of n different cards. Each time, the card we buy is chosen independently and uniformly at random from the n cards.

Let $X=$ number of cards we need to buy Previously, we get $E[X]=n H(n)$

Markov vs Chebyshev
 (Example 2)

Question: Can we bound the probability of buying more than $2 n H(n)$ cards?

By Markov Inequality,

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 2 n H(n)) \\
\leq & E[X] /(2 n H(n)) \\
= & n H(n) /(2 n H(n)) \\
= & 1 / 2
\end{aligned}
$$

Markov vs Chebyshev
 (Example 2)

Question:
How about using Chebyshev Inequality?

To apply the inequality, we need to get $\operatorname{Var}[X]$... What is this value?

Markov vs Chebyshev
 (Example 2)

Let $X_{i}=\#$ cards bought to get a new card after collecting exactly $\mathrm{i}-1$ distinct cards

So, $X=X_{1}+X_{2}+\ldots+X_{n}$
Also, the variables X_{i} are all independent!
Thus,

$$
\operatorname{Var}[\mathrm{X}]=\operatorname{Var}\left[\mathrm{X}_{1}\right]+\operatorname{Var}\left[\mathrm{X}_{2}\right]+\ldots+\operatorname{Var}\left[\mathrm{X}_{n}\right]
$$

Markov vs Chebyshev
 (Example 2)

What is $\operatorname{Var}\left[X_{k}\right]$?
Recall: X_{k} is Geo(p) with $p=(n-k+1) / n$ Thus,

$$
\begin{aligned}
\operatorname{Var}\left[X_{k}\right] & =(1-p) / p^{2} \\
& \leq 1 / p^{2} \\
& =n^{2} /(n-k+1)^{2}
\end{aligned}
$$

Markov vs Chebyshev (Example 2)

So, $\operatorname{Var}[\mathrm{X}]=\operatorname{Var}\left[\mathrm{X}_{1}\right]+\operatorname{Var}\left[\mathrm{X}_{2}\right]+\ldots+\operatorname{Var}\left[\mathrm{X}_{n}\right]$

$$
\begin{aligned}
& \leq n^{2} /(n)^{2}+n^{2} /(n-1)^{2}+\ldots+n^{2} /(1)^{2} \\
& \leq 2 n^{2}
\end{aligned}
$$

Now, by Chebyshev Inequality,

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 2 n H(n)) \leq \operatorname{Pr}(|X-E[X]| \geq n H(n)) \\
& \leq \operatorname{Var}[X] /(n H(n))^{2} \\
& \leq 2 n^{2} /(n H(n))^{2} \\
& =O\left(1 / \log ^{2} n\right) \ldots \text { much better than 1/2!!!! }
\end{aligned}
$$

