CS5314 Randomized Algorithms

Lecture 8: Moments and Deviations (Common Variance, Chebyshev Inequality)

1

Objectives

- Variances of Bin(n,p) and Geo(p)
- Chebyshev's Inequality

Variance of Binomial RV

Lemma: Let X be a binomial random variable with parameters n and p. Then, Var[X] = np(1-p)

How do we get that? Recall: $Var[X] = E[(X - E[X])^2]$ $= E[X^2] - (E[X])^2$

First Proof (computing E[X²])

- $E[X^2] = \sum_{0 \le j \le n} j^2 Pr(X=j)$
- = $\sum_{0 \le j \le n} j^2 C_j^n p^j (1-p)^{n-j}$
- = $\sum_{0 \le j \le n} (j(j-1)+j) C_j^n p^j (1-p)^{n-j}$
- = $\sum_{2 \le j \le n} j(j-1) C_j^n p^j (1-p)^{n-j}$
 - + $\sum_{1 \le j \le n} j C_j^n p^j (1-p)^{n-j}$
- By expanding C_j^n term, we get:

First Proof (computing E[X²]) EIX² 1 = $n(n-1)p^2 \sum_{2 \le j \le n} C_{j-2}^{n-2} p^{j-2} (1-p)^{n-j}$ + $np \sum_{1 \le j \le n} C_{j-1}^{n-1} p^{j-1} (1-p)^{n-j}$ = $n(n-1)p^{2}(p + (1-p))^{n-2} + np(p + (1-p))^{n-1}$

 $= n(n-1)p^2 + np$

First Proof (computing E[X²])

Since $Var[X] = E[X^2] - (E[X])^2$, we have:

Var[X] =
$$n(n-1)p^2 + np - (np)^2$$

= $n^2p^2 - np^2 + np - n^2p^2$
= $np - np^2$
= $np(1-p)$

Second Proof (using indicator)

Binomial r.v. X = Bin(n,p) can be written as the sum of n independent indicator, X₁, X₂, ..., X_n, each succeeds with probability p

Second Proof (using indicator)

Var[X₁] = E[(X₁ - E[X₁])²] = $(1-p)^{2} Pr(X_{1}=1) + (0-p)^{2} Pr(X_{1}=0)$ = $(1-p)^{2}p + p^{2}(1-p)$ = p(1-p)(1-p + p) = p(1-p)

Thus,

 $Var[X] = n Var[X_1] = np(1-p)$

Variance of Geometric RV

Lemma: Let X be a geometric random variable with parameter p. Then, Var[X] = (1-p)/p²

How do we get that?

First Proof (computing E[X²]) $E[X^{2}] = \sum_{j \ge 0} j^{2} Pr(X = j)$ $= \sum_{j \ge 0} j^{2} p (1-p)^{j-1}$ $= [p/(1-p)] \times \sum_{j \ge 0} j^{2} (1-p)^{j}$

To get E[X²], it remains to compute the value of $\Sigma_{j \ge 1} j^2 (1-p)^j$

Before that, let's look at some equalities

First Proof (computing E[X²]) For $|\mathbf{x}| < 1$. $1/(1-x) = \sum_{j \ge 0} x^{j}$ **(a)** (b) By differentiating (a), we get $1/(1-x)^2 = \sum_{j \ge 0} j x^{j-1}$ (c) By differentiating (b), we get $2/(1-x)^3 = \sum_{j \ge 0} j(j-1) x^{j-2}$

First Proof (computing E[X²])

Using the previous equalities,

First Proof (computing E[X²]) So, $E[X^2] = [p/(1-p)] \times \sum_{j \ge 0} j^2 (1-p)^j$ = $[p/(1-p)] \times ((1-p)^2+(1-p)) / (1-(1-p))^3$ = $[p/(1-p)] \times ((1-p)(2-p)) / p^3$ $= (2-p)/p^2$ Then, $Var[X] = E[X^2] - (E[X])^2$ $= (2-p)/p^2 - (1/p)^2 = (1-p)/p^2$

Second Proof (by memory-less property)

Let Y be a random variable such that Y=1 if the first trial succeeds, and Y=0 if the first trial fails

Then, $E[X^2] = Pr(Y=1) E[X^2|Y=1]$ $+ Pr(Y=0) E[X^2|Y=0]$ $= p E[X^2|Y=1] + (1-p) E[X^2|Y=0]$ $= p + (1-p) E[X^2|Y=0]$

Second Proof (by memory-less property) We want to get $E[X^2|Y=0]$... Let Z = #remaining trials until first success In this case (Y=0), we have X = Z + 1So, $E[X^2|Y=0] = E[(Z+1)^2]$... [why?] $= E[Z^{2}+2Z+1] = E[Z^{2}] + 2E[Z] + 1$ But from the memory-less property, $E[Z^2] = E[X^2]$ and E[Z] = E[X]

Second Proof (by memory-less property) So, $E[X^2] = p + (1-p) E[X^2|Y=0]$ $= p + (1-p) (E[X^2] + 2E[X] + 1)$ $= p + (1-p) (E[X^2] + 2/p + 1)$

Rearranging terms, p E[X²] = p + 2(1-p)/p + (1-p) = 1 + (2-2p)/p = (2-p)/p

Again, E[X²] = (2-p)/p² → Var[X] = (1-p)/p² as before

$\begin{array}{l} Chebyshev \mbox{Inequality}\\ \mbox{Theorem: For any positive } a,\\ \mbox{Pr}(|X - E[X]| \geq a) \leq Var[X]/a^2 \end{array}$

17

Proof

By using Markov Inequality!!!

 $\mathsf{Pr}(|\mathsf{X} - \mathsf{E}[\mathsf{X}]| \ge a)$

- = $Pr((X E[X])^2 \ge a^2)$
- $\leq E[(X E[X])^2] / a^2$

[by Markov inequality]

= $Var[X]/a^2$

Chebyshev Inequality (other variations)

Corollary: For any positive r, $Pr(|X - E[X]| \ge r \sigma[X]) \le 1/r^2$

Corollary: For any positive r, $Pr(|X - E[X]| \ge rE[X]) \le Var[X]/(rE[X])^2$

Markov vs Chebyshev

- When applying Chebyshev :
 - 1. X can take on negative values
 - 2. Need Var[X] to get the bound
 - 3. Often give better bounds than Markov (since it is based on more information)

Markov vs Chebyshev (Example 1) Suppose we flip a fair coin n times Question: Can we bound the probability of more than 3n/4 heads? Let X = number of heads. So, E[X] = n/2By Markov Inequality,

> $Pr(X \ge 3n/4) \le E[X] / (3n/4)$ = (n/2) / (3n/4) = 2/3

Markov vs Chebyshev (Example 1)

Let's use Chebyshev Inequality instead: Again, X = number of heads So, E[X] = n/2 and Var[X] = n/4 ... [why?] Then, we have $Pr(X \ge 3n/4)$ $\leq \Pr(|X - E[X]| \geq n/4)$...[why?] $\leq Var[X]/(n/4)^{2}$ = 4/n ... much better bound than 2/3!!!

Markov vs Chebyshev (Example 2) Let us revisit Coupon Collector's problem:

There are a total of n different cards. Each time, the card we buy is chosen independently and uniformly at random from the n cards.

Let X = number of cards we need to buy Previously, we get E[X] = nH(n) Markov vs Chebyshev (Example 2) Question: Can we bound the probability of buying more than 2nH(n) cards?

By Markov Inequality,

- $Pr(X \ge 2nH(n))$ $\le E[X] / (2nH(n))$
- = nH(n) / (2nH(n))
- = 1/2

Markov vs Chebyshev (Example 2)

Question:

How about using Chebyshev Inequality?

To apply the inequality, we need to get Var[X] ... What is this value?

Markov vs Chebyshev (Example 2)

- Let X_i = #cards bought to get a new card after collecting exactly i-1 distinct cards
- So, $X = X_1 + X_2 + ... + X_n$ Also, the variables X_i are all independent! Thus,

 $Var[X] = Var[X_1] + Var[X_2] + ... + Var[X_n]$

Markov vs Chebyshev (Example 2)

What is Var[X_k]?

Recall: X_k is Geo(p) with p = (n-k+1)/nThus, $Var[X_k] = (1-p)/p^2$ $\leq 1/p^2$ $= n^2/(n-k+1)^2$ $\begin{array}{l} & \mbox{Markov vs Chebyshev} \\ & (Example 2) \end{array} \\ & \mbox{So, Var}[X] = Var[X_1] + Var[X_2] + ... + Var[X_n] \\ & \ \le n^2/(n)^2 + n^2/(n-1)^2 + ... + n^2/(1)^2 \\ & \ \le 2n^2 \end{array}$

Now, by Chebyshev Inequality, $Pr(X \ge 2nH(n)) \le Pr(|X - E[X]| \ge nH(n))$ $\le Var[X] / (nH(n))^2$ $\le 2n^2 / (nH(n))^2$

= $O(1/\log^2 n)$... much better than 1/2!!!