CS5314
 Randomized Algorithms

Lecture 7: Moments and Deviations (Markov Inequality, Variance)

Objectives

- Introduce Markov Inequality
- Define Variance and Moments of an RV

Markov Inequality

Theorem: Let X be a random variable that takes on non-negative values only. Then, for any positive a

$$
\operatorname{Pr}(X \geq a) \leq E[X] / a
$$

First Proof (from def of $E[X]$)

$$
\begin{aligned}
& E[X]=\sum_{j} j \operatorname{Pr}(X=j) \\
& =\Sigma_{0 \leq j<a} \operatorname{Pr}(X=j)+\sum_{j \geq a} j \operatorname{Pr}(X=j) \quad \text { [why?] } \\
& \geq \Sigma_{0 \leq j<a} 0 \operatorname{Pr}(X=j)+\sum_{j \geq a} a \operatorname{Pr}(X=j) \\
& =0+a \sum_{j \geq a} \operatorname{Pr}(X=j) \\
& =a \operatorname{Pr}(X \geq a)
\end{aligned}
$$

Thus, $\operatorname{Pr}(X \geq a) \leq E[X] / a$

Second Proof (from E[X|X Ca)

$$
\begin{aligned}
E[X]= & E[X \mid X<a] \operatorname{Pr}(X<a)+ \\
& E[X \mid X \geq a] \operatorname{Pr}(X \geq a) \\
\geq & 0 \operatorname{Pr}(X<a)+a \operatorname{Pr}(X \geq a) \\
= & a \operatorname{Pr}(X \geq a)
\end{aligned}
$$

Thus, $\operatorname{Pr}(X \geq a) \leq E[X] / a$

Third Proof (using indicator)

Let I be an indicator random variable with:

$$
\begin{array}{ll}
I=1 & \text { if } X \geq a \\
I=0 & \text { otherwise }
\end{array}
$$

Recall: $E[I]=\operatorname{Pr}(I=1)=\operatorname{Pr}(X \geq a)$
Our target is to bound $E[I]$ (w.r.t. $E[X]$).
So how is E[I] related to E[X] ??
In particular, how is I related to X ??

Third Proof (using indicator)

Note:

$$
\begin{array}{ll}
I=1 & \text { if } X \geq a \\
I=0 & \text { otherwise }
\end{array}
$$

Also $X \geq 0$, so that we always have

$$
I \leq X / a
$$

Thus, $E[I] \leq E[X / a]=E[X] / a \quad[w h y ?]$

Combining, we have,

$$
\operatorname{Pr}(X \geq a) \leq E[X] / a
$$

Example

Let us flip a fair coin n times
Question: Can we bound the probability of getting more than $3 n / 4$ heads?
Let $X=$ number of heads
So, $E[X]=n / 2$
By Markov Inequality,

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 3 n / 4) \leq E[X] /(3 n / 4) \\
& =(n / 2) /(3 n / 4)=2 / 3
\end{aligned}
$$

Variance and Moments

Definition: The $k^{\text {th }}$ moment of a random variable X is defined as $E\left[X^{k}\right]$

Definition: The variance of a random variable X is defined as
$\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}$
Definition: The standard deviation of a random variable X is defined as

$$
\sigma[X]=\sqrt{\operatorname{Var}[X]}
$$

Linearity of Variance?

Recall: For any random variables X and Y,

$$
E[X+Y]=E[X]+E[Y]
$$

Is it still true for variance? That is,

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y] ?
$$

Covariance

Answer: No! In fact, an extra term, called covariance, will be involved...

Definition: The covariance of two random variables X and Y is defined as

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]
$$

Covariance (2)

Theorem: For any random variables X and Y,

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}(X, Y)
$$

Proof: Let $A=X-E[X]$ and $B=Y-E[Y]$.

$$
\begin{aligned}
& \operatorname{Var}[X+Y]=E\left[(X+Y-E[X+Y])^{2}\right] \\
& =E\left[(X+Y-E[X]-E[Y])^{2}\right] \\
& =E\left[(A+B)^{2}\right]=E\left[A^{2}+B^{2}+2 A B\right] \\
& =E\left[A^{2}\right]+E\left[B^{2}\right]+2 E[A B] \\
& =\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

Covariance (3)

Theorem (generalized version): For any finite number of random variables X_{1}, X_{2}, \ldots, X_{k}

$$
\operatorname{Var}\left[\sum_{j} X_{j}\right]=\left(\sum_{j} \operatorname{Var}\left[X_{j}\right]\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Proof: By induction (try this at home!)

More on Covariance

Recall: If random variables X and Y are independent, then for every values a and b,

$$
\operatorname{Pr}((X=a) \cap(Y=b))=\operatorname{Pr}(X=a) \operatorname{Pr}(Y=b)
$$

Theorem: If X and Y are independent random variables, then

$$
E[X Y]=E[X] E[Y]
$$

Proof

$E[X Y]$
$=\Sigma_{a} \Sigma_{b} a b \operatorname{Pr}((X=a) \cap(Y=b))$
$=\Sigma_{a} \Sigma_{b} a b \operatorname{Pr}(X=a) \operatorname{Pr}(Y=b)$
$=\Sigma_{a} a \operatorname{Pr}(X=a) \Sigma_{b} b \operatorname{Pr}(Y=b)$
$=E[X] E[Y]$

More on Covariance (2)

Lemma: If X and Y are independent random variables, then

$$
\operatorname{Cov}(X, Y)=0
$$

Proof: $\operatorname{Cov}(X, Y)$
$=E[(X-E[X])(Y-E[Y])]$
$=E[X-E[X]] E[Y-E[Y]] \quad$. [why?]
$=(E[X]-E[X]) E[Y-E[Y]]$
$=0$

More on Covariance (3)

Corollary: If X and Y are independent random variables, then

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]
$$

Corollary: If $X_{1}, X_{2}, \ldots, X_{k}$, are pairwise independent random variables, then

$$
\operatorname{Var}\left[\sum_{j} X_{j}\right]=\sum_{j} \operatorname{Var}\left[X_{j}\right]
$$

Pairwise? Mutually?

Recall: For random variables $X_{1}, X_{2}, \ldots, X_{k}$ they are mutually independent if for any subset $I \subseteq[1, k]$, and any values x_{i}

$$
\operatorname{Pr}\left(\cap_{i \in I} X_{i}=x_{i}\right)=\prod_{i \in I} \operatorname{Pr}\left(X_{i}=x_{i}\right)
$$

But for random variables $X_{1}, X_{2}, \ldots, X_{k}$ to be pairwise independent, we only need each pair of X_{i}, X_{j} to be independent Thus, mutually independent implies pairwise independent, but not the other way round

Any Example?

Suppose we roll two fair dice. Let X, Y, Z be indicator random variables, such that

$$
\begin{aligned}
--X=0 & \text { if first die is even, } \\
X=1 & \text { otherwise; } \\
--Y=0 & \text { if second die is even, } \\
Y=1 & \text { otherwise; } \\
--Z=0 & \text { if total sum is even, } \\
Z=1 & \text { otherwise }
\end{aligned}
$$

