CS5314 Randomized Algorithms

Lecture 5: Discrete Random Variables and Expectation
(Conditional Expectation, Geometric RV)

Objectives

- Introduce Geometric RV
- We then introduce
- Conditional Expectation
- Application:
- Alternative proof of expectation of a geometric RV
- Solving the branching process problem

Geometric Random Variable

Definition: A geometric random variable X with parameter p, denoted by Geo(p), is defined by the following probability distribution on $r=1,2, \ldots$:

$$
\operatorname{Pr}(X=r)=p(1-p)^{r-1}
$$

The event " $X=r$ " represents it takes exactly r independent trials to get the first success, where each trial succeeds with probability p

Memory-less property of Geometric Random Variable

Suppose we have already failed k times.
What is the probability that we still need exactly n more trials to get the first success?
Ans: $p(1-p)^{n-1}$

Note that this probability is independent of how many times we have failed !!!

Memory-less Property

Lemma: For a geometric random variable X with parameter p

$$
\operatorname{Pr}(X=n+k \mid X>k)=\operatorname{Pr}(X=n)
$$

How to prove?

Memory-less Property (proof)

$$
\begin{aligned}
& \operatorname{Pr}(X=n+k \mid X>k) \\
& =\operatorname{Pr}((X=n+k) \cap(X>k)) / \operatorname{Pr}(X>k) \\
& =\operatorname{Pr}(X=n+k) / \operatorname{Pr}(X>k) \\
& =p(1-p)^{n+k-1} / \sum_{j \geq k+1} p(1-p)^{j-1} \\
& =p(1-p)^{n+k-1} /(1-p)^{k} \\
& =p(1-p)^{n-1} \\
& =\operatorname{Pr}(X=n)
\end{aligned}
$$

A Useful Formula

Lemma: Let X be a discrete random variable that takes on non-negative integral values. Then,

$$
E[X]=\sum_{i=1,2, \ldots} \operatorname{Pr}(X \geq i)
$$

Proof:

$$
\begin{aligned}
& \sum_{i=1,2, \ldots} \operatorname{Pr}(X \geq i)=\sum_{i=1,2, \ldots} \sum_{j=i, i+1, \ldots} \operatorname{Pr}(X=j) \\
& =\sum_{j=1,2, \ldots} \sum_{i=1,2, \ldots, j} \operatorname{Pr}(X=j) \\
& =\sum_{j=1,2, \ldots} \operatorname{Pr}(X=j)=E[X]
\end{aligned}
$$

A Useful Formula (2 ${ }^{\text {nd }}$ proof)

Expectation of Geo(p)

Lemma: Let X be a geometric random variable with parameter p. Then,

$$
E[X]=1 / p
$$

Proof: For the random variable Geo(p),

$$
\operatorname{Pr}(X \geq i)=\sum_{n=i, i+1, \ldots . .} p(1-p)^{n-1}=(1-p)^{i-1}
$$

Thus, $E[X]=\Sigma_{i=1,2, \ldots .} \operatorname{Pr}(X \geq i)$

$$
=\Sigma_{i=1,2, \ldots}(1-p)^{i-1}=1 /(1-(1-p))=1 / p
$$

Conditional Expectation

Definition: The conditional expectation of a random variable X given that event F occurs is defined as:

$$
E[X \mid F]=\sum_{i} i \operatorname{Pr}(X=i \mid F)
$$

Suppose X and Y are two random variables.
Then, $E[X \mid Y=j]=\sum_{i} i \operatorname{Pr}(X=i \mid Y=j)$

Example

Let $X=$ sum of two fair dice, and $X_{1}=$ result of the first die

- Without any information, $E[X]=7$
- Suppose we know the outcome of first die, X_{1}, is 2.
\rightarrow Do we still 'expect' the sum of two dice to be 7? Should the sum be larger now? or smaller?
- That is, what is $E\left[X \mid X_{1}=2\right]$?

Example (cont)

$$
\begin{aligned}
& E\left[X \mid X_{1}=2\right] \\
& =\sum_{i} i \operatorname{Pr}\left(X=i \mid X_{1}=2\right) \\
& =\sum_{i=3,4, \ldots, 8} i \operatorname{Pr}\left(X=i \mid X_{1}=2\right) \\
& =\sum_{i=3,4, \ldots, 8} i(1 / 6) \\
& =33 / 6 \\
& =5.5
\end{aligned}
$$

An Identity

Lemma: For any random variables X and Y

$$
E[X]=\sum_{j} \operatorname{Pr}(Y=j) E[X \mid Y=j]
$$

How to prove?

Proof

$$
\begin{aligned}
& \sum_{j} \operatorname{Pr}(Y=j) E[X \mid Y=j] \\
& =\sum_{j} \operatorname{Pr}(Y=j) \sum_{i} i \operatorname{Pr}(X=i \mid Y=j) \\
& =\sum_{i} \sum_{j} i \operatorname{Pr}(Y=j) \operatorname{Pr}(X=i \mid Y=j) \\
& =\sum_{i} i \sum_{j} \operatorname{Pr}(X=i \cap Y=j) \\
& =\sum_{i} i \operatorname{Pr}(X=i) \\
& =E[X]
\end{aligned}
$$

Another Lemma

Lemma: $E[X \mid Y=j]=\sum_{\omega} X(\omega) \operatorname{Pr}(\omega \mid Y=j)$

How to prove?
... similar to proving $E[X]=\sum_{\omega} X(\omega) \operatorname{Pr}(\omega)$

Expectation of Geo(p) (revisited)

Another way to find $E[X]$ for $X=\operatorname{Geo}(p)$ is by using the memory-less property:
Let Y be a random variable such that $y=1$ if the first trial succeeds, and $y=0$ if the first trial fails

$$
\begin{array}{ll}
E[X]=\operatorname{Pr}(Y=1) E[X \mid Y=1]+\operatorname{Pr}(Y=0) E[X \mid Y=0] \\
=p E[X \mid Y=1]+(1-p) E[X \mid Y=0] \\
=p+(1-p)(1+E[X]) \quad \quad \quad[w h y ? ?] \\
=(1-p) E[X]+1 & \quad E[X]=1 / p
\end{array}
$$

Linearity of Conditional Expectation

Lemma: For any finite collection of random variables $X_{1}, X_{2}, \ldots, X_{k}$, each with finite expectation, and for any random variable Y

$$
E\left[\sum_{i} X_{i} \mid Y=j\right]=\sum_{i} E\left[X_{i} \mid Y=j\right]
$$

How to prove?
... similar to proving $E\left[\sum_{i} X_{i}\right]=\sum_{i} E\left[X_{i}\right]$

A new notation: $E[X \mid Y]$

Definition: Let X and Y be two random variables. The expression $E[X \mid Y]$ is a random variable that takes on the value $E[X \mid Y=j]$ when $Y=j$

Is each the following a constant?
$E[X], E[X \mid Y=j], E[X \mid Y], E[E[X \mid Y]]$
Note: $E[X \mid Y]$ is not a constant... its value depends on Y so that it is a function of Y

$E[X \mid Y]$ is a function of Y

Ex: Let $X=$ sum of two fair dice, and $y=$ outcome of the first dice
$E[X \mid Y]=\sum_{i} i \operatorname{Pr}(X=i \mid Y)$
$=\sum_{i=y+1, y+2, \ldots, y+6} i \operatorname{Pr}(X=i \mid y)$
$=\sum_{i=y+1, y+2, \ldots, y+6} i(1 / 6)$
$=y+3.5$

What is $E[E[X \mid Y]]$?

Theorem: Let X and Y be two random variables. Then,

$$
E[X]=E[E[X \mid Y]]
$$

Proof:

$$
\begin{aligned}
& E[E[X \mid Y]] \\
& =\sum_{j} E[X \mid Y=j] \operatorname{Pr}(Y=j) \\
& =E[X]
\end{aligned}
$$

Branching Process Problem

Imagine we have a strange program P which, before it finishes running, will create a random number of new copies of itself

Now, consider running the first copy of P.

- Before this P finishes its execution, it may create some new copies of P
- Similarly, before each such P finishes its execution, it may create some new copies of P, and so on ...

Branching Process Problem

Branching Process Problem

Suppose we now know that: the number of new copies each P creates is a binomial random variable $\operatorname{Bin}(n, p)$

Question:
What is the expected number of copies of P created?

Branching Process Problem

Let us introduce the idea of generations.
The initial copy of P is in generation 0 .
For other copy, it is in generation if it is created by a copy of P in generation i-1. Let $y_{i}=$ number of copies in generation i
Thus,

$$
Y_{0}=1 \text { and } E\left[Y_{1}\right]=n p
$$

Branching Process Problem

Our target is to find

$$
\begin{aligned}
& E\left[Y_{0}+Y_{1}+Y_{2}+Y_{3}+\ldots\right] \\
= & E\left[Y_{0}\right]+E\left[Y_{1}\right]+E\left[Y_{2}\right]+\ldots
\end{aligned}
$$

The first two terms are known.
For the remaining terms, such as $E\left[Y_{2}\right]$, it may be easy to compute IF we know the exact number of copies in the previous generation ... Unluckily, we don't know that

Branching Process Problem

Anyway, let us see what if we "know" that the number of copies in generation $i-1$ is j
[It cannot hurt to try]
Question: Can we find $E\left[Y_{i} \mid Y_{i-1}=j\right]$?
Here, we have j copies in generation i-1
Let $Z_{k}=\#$ new copies created by $k^{\text {th }} P$ in generation i-1

Branching Process Problem

$$
\begin{aligned}
& E\left[Y_{i} \mid Y_{i-1}=j\right] \\
& =E\left[\sum_{k=1,2, \ldots, Z_{k}} \mid Y_{i-1}=j\right] \\
& =\sum_{k=1,2, \ldots, j} E\left[Z_{k} \mid Y_{i-1}=j\right] \\
& =\sum_{k=1,2, \ldots, j} \Sigma_{r} r \operatorname{Pr}\left(Z_{k}=r \mid Y_{i-1}=j\right) \\
& =\sum_{k=1,2, \ldots, j} \Sigma_{r} r \operatorname{Pr}\left(Z_{k}=r\right) \\
& =\sum_{k=1,2, \ldots, j} E\left[Z_{k}\right]=j n p
\end{aligned}
$$

Branching Process Problem

Then, we have:

$$
\begin{aligned}
E\left[Y_{i}\right] & =E\left[E\left[Y_{i} \mid Y_{i-1}\right]\right] \\
& =\sum_{j} E\left[Y_{i} \mid Y_{i-1}=j\right] \operatorname{Pr}\left(Y_{i-1}=j\right) \\
& =\sum_{j} j n p \operatorname{Pr}\left(Y_{i-1}=j\right) \\
& =n p \sum_{j} j \operatorname{Pr}\left(Y_{i-1}=j\right) \\
& =n p E\left[Y_{i-1}\right]
\end{aligned}
$$

Though we still don't know what exactly $E\left[Y_{i}\right]$ is, we get a very useful relationship

Branching Process Problem

In other words,

$$
\begin{aligned}
& E\left[Y_{0}\right]=Y_{0}=1=(n p)^{0} \\
& E\left[Y_{1}\right]=n p \\
& E\left[Y_{2}\right]=n p E\left[Y_{1}\right]=(n p)^{2} \\
& E\left[Y_{3}\right]=n p E\left[Y_{2}\right]=(n p)^{3}
\end{aligned}
$$

$$
E\left[Y_{i}\right]=(n p)^{i}
$$

Branching Process Problem

Total copies $=\sum_{i \geq 0} Y_{i}$
Thus, expected total copies
$=E\left[\sum_{i \geq 0} Y_{i}\right]=\sum_{i \geq 0} E\left[Y_{i}\right]=\sum_{i \geq 0}(n p)^{i}$
If $n p \geq 1$, the above term is unbounded.
If $n p<1$, the above term is $1 /(1-n p)$

