CSbH314
Randomized Algorithms

Lecture 20: Probabilistic Method
(Lovasz Local Lemma)



Objectives

» Introduce Lovasz Local Lemma (LLL)

- one of the most elegant and useful
tools in the probabilistic method

- Two versions.

- symmetric case
- general case



Lovasz Local Lemma

Let E;, E,, ..., E, be a set of BAD events
Suppose each occurs with prob < 1

Fact: If they are mutually independent, it is
easy to see that
Pr(no BAD events) > O .. [why?]

However, in many natural scenario, the
BAD events are not mutually independent

Problem: Can we still easily show that
Pr(no BAD events) > 0 ?



Lovasz Local Lemma (2)

In general, probably not...

But, if there are not many dependency
among the BAD events, then the set of
events are 'roughly’ mutually independent

= we may still be able to show
Pr(no BAD events) > O ...

Lovasz Local Lemma gives sufficient
conditions when we can do so ...

- It relies on a concept of dependency
graph defined as follows (next slide)

4



Dependency Graph

Let E be an event

Definition: E is mutually independent of a
set of events {E,, E,, .., E } if

forany I C [1,n], Pr(E| M1 E; ) Pr(E)

Definition: A dependency graph for a set of
events {E;, E,, ..., E,} is a graph
G=(V,E),V={1,2,..n} such that

for any j, E: is mutually independent of
the events (’Ek | (j.k) g_f E}




Dependency Graph (2)

Test your understanding:

1. Let S be a set of pair-wise independent
events. Is agraph with no edges always a
dependency graph of S ?

2. Let S be a set of events.
Is the dependency graph of S unique?

The answers are NO for both questions...



Dependency Graph (3)

Consider flipping a fair coin twice.
Let E, = the first flip is head
E, = the second flip is tail
E; = the two flips are the same
> the events are pairwise independent

We see that if a graph has less than 2 edges,
it must not be a dependency graph

On the other hand, any graph with 2 or more
edges is a dependency graph !l
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Lovasz Local Lemma
(Symmetric Case)

Theorem: Let G be a dependency graph of a
set of BAD events { E;, E,, .., E.}. If
(i) Pr(E) <p<1 foreachE,
(ii) 1< maxdeg(G) <d, and
(i) 4pd <1
then Pr(no BAD events) > 0O

Remark: If maxdeg(G) = 0, then Pr(no BAD events)> 0O since
all events are mutually independent
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Proof

Let S = {s,,s,...} be a subset of {1, 2, ..., n}

The proof is based on induction

In particular, we show two statements are
true alternately:

(1) Pr(Ec| MjcsE)<2p foralls,
with |S|=0,1, 2, ..., n-1
(2) Pr(ﬂj csE)>0 for all S,

with |S[=1,2, .. ,n



Proof (2)

The base case(s) are : 15t statement with
|S|=0, and 2" statement with |S|=1

For the inductive steps:

(1) Assume 15" statement is true for |S|< h
and 2" statement is true for |S| < h+l

= prove 15" statement is true for
(2) Assume 15t statement is true for

S
S

=h+1
< h+l

and 2" statement is true for |S| < h+l1,
= prove 2" statement is true for |S|=h+2
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Proof (3)

Consequently, by induction,
we can prove the 15t statement when |S|=1,
and then the 2" statement when |S|=2,
and then the 15t statement when |S|=2,
and then the 25t statement when |S|=3,
and so on...
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Proof: Base Cases

Base Case 1: 1st statement, |S|=0
In this case, we have

Pr( E, | ﬂjesﬂEj):Pr( E,)<p<2p
= So this case is true

Base Case 2: 2" statement, |S|=1

In this case, we have
Pr(ﬂJES_‘EJ):I‘Pr(Esl)Zl"p>O

= So this case is true
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Proof: Inductive Case 1

Inductive Case 1: Assume 15t statement is
true for |S|=0,12,...h, and 2
statement is true for |S|=1,2,.. h+1

, ,l..,

Then, consider the case when |S|= h+1
For a particular E,, let

S;={je S| (k,j)isanedge in the
dependency graph G }

S,=5-S5; .. [corresponds to mutually
independent events ]

Note: Since maxdeg(G) < d,so |S;] < d
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Proof: Inductive Case 1 (2)

If |S,| = |S|, then E, is mutually independent
of the events —E; forall jin S

In this case:
Pr( Ey | mjes _'EJ'): Pr(E ) <p<2p

Otherwise, |S,| < |S].
In this case, we introduce a notation:
LeT FS: mjes _'EJ

Similarly, we define F5 and Fg,
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Proof: Inductive Case 1 (3)

Note: Fg = Fs N Fg,

So,

Pr'(EleS) ZPP(Ek ﬂFS) /PP(FS)
Pr(Ex N Fs, NFg) /Pr(Fs, N Fg)
Pr(Ex N Fs, | Fs,) Pr(Fs)) /

Pr(Fs, | Fs,) Pr(Fs,)
Pr'( Ek [ Fsl I FSZ) / Pr'(l‘::s1 | FSZ)
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Proof: Inductive Case 1 (4)
From the previous equality, we have
Pr( Ex | M c s —E;)
= Pr(Ex NFs | Fs,)/ Pr(Fs | Fs))
<Pr(Ec| Fs,)/ Pr(Fs | Fs))

= Pr(E,)/ Pr(Fs | Fs)
<p/Pr(Fs, |Fs) .. (Equation 1)

16



Proof: Inductive Case 1 (5)
On the other hand, we have
Pr(Fs, | Fs,)=Pr((),cs, —E; | (s, —E))
=1-Pr(U;cs E | 1., -E)
>1- 2 s, Pr(E.lﬂjeszﬂEj)
> 1 - 2 je sy .. [by induction hypothesis]

>1-2pd .. [since |S;] < d ]
> 1/2 .. [sinced4pd < 1]
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Proof: Inductive Case 1 (6)
So, combining this with Equation 1, we have
Pr( E | m;,es _'Ej)
<p/Pr(Fs |Fs,) <2p

Thus, 1st statement is true for |S|=h+1
=> This proves Inductive Case 1

It remains to show Inductive Case 2 is true
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Proof: Inductive Case 2

Inductive Case 2: Assume 157 and 2nd
statement are true for |S| up to h+l

Then, consider the case when |S|= h+2
Pr(N; s =E;) = Pr(N &)
=11, .. Pr(=Es | [ izg 401 —Es)
=11, ... (1- Pr(Es | (i1 4ot ﬁEsf))

Jelsy,s2, . She2!

> Hrzl to he? (1 - 2p) > O .. [by induction hypothesis]
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Conclusion

Thus, 2nd statement is true for |S|=h+2
=> This proves Inductive Case 2

By induction, we can then show that 2"
statement is true for |S|=n

That is, Pr(M; .5 -E;) >0 when |S|=n

Consequently, we have
Pr(no BAD events) = Pr(( 1.5 -E;) > O
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Example: Edge-Disjoint Paths

There are 50 pairs of users in a network
system, each pair wants to obtain a
dedicated path for communication

That is, they do not want their path to share
any edge with the path chosen by others

Now, we know that each pair has a set of
2000 possible paths to choose, and each

such path “crashes” with at most 5 paths
in the set of any other pair

Question: Can they get a dedicated path?
Ans. Yes
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Edge-Disjoint Paths

In fact, we can show the following based on
the Lovasz Local Lemma:

Let F; = set of m paths pair-j can choose

Theorem: If foralli= ]

, each path in F,

“clashes” with no more than k paths in F;,
then, when 8nk/m <1, there exists a way
to choose n edge-disjoint paths connecting

the n pairs.

How to prove?
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Proof

Let E;; = event that paths selected by
pair-i and pair-j clashes

> Pr(E;;) < k/m

Let G = dependency graph of these events

Since E; ; is dependent only on events E; ,
or E,; = at most 2n events

Now, by setting p = k/m and d = 2n,
Pr(E;;) < p, maxdeg(G)<d, and 4pd<1

= We can apply LLL, and theorem follows
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Lovasz Local Lemma
(General Case)

Next, we describe the general case of LLL

(the proof is extremely similar to the symmetric case):

Theorem: Let G be a dependency graph of a
set of BAD events{ E;, E,, .., E, }.

Assume that there are x4, x,, ..., x, € [0,1)

Pr(no BAD events) > TT_,,., (1-x))

24



Proof
Let S = {s,,s,...} be a subset of {1, 2, ..., n}

The proof is based on induction, where we
show two statements are true alternately:

(1) Pr(E | M);.s "E) <x, foralls,

with |S|=0,1, 2, ..., n-1
(2) Pr'(mj cs Ep > HJ' s (1-x;) >0

forall S, with |S|=1,2, ... ,n

25



Proof: Base Cases

Base Case 1: 1st statement, |S|=0
In this case, we have

Pr( E, | ﬂj s ﬂEJ-) =Pr( E, ) < X ... [why??]
=> So this case is true

Base Case 2: 2" statement, |S|=1

In this case, we have
Pr(ﬂjesﬂEj): 1-Pr( Esl)Z 1-x51>0

= So this case is true
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Proof: Inductive Case 1

Inductive Case 1: Assume 15t statement is
true for |S|=0,12,.. h, and 2™
statement is true for |S|=1,2,.. h+1

Then, consider the case when |S|= h+1
For a particular E,, let

S;={je S| (kj)isanedge in the
dependency graph G }

S,=5-S5; .. [corresponds to mutually
independent events ]
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Proof: Inductive Case 1 (2)

If |S,| = |S|, then E, is mutually independent
of the events —E; forall jin S

In this case:
Pr( E, | m;,es _'Ej): Pr( Ex ) < xy

Otherwise, |S,| < |S].
In this case:
LeT FS: mjes _‘EJ

Similarly, we define F5 and Fg,

28



Proof: Inductive Case 1 (3)

Note: Fg = Fs N Fg,

So,

Pr'(EleS) ZPP(Ek ﬂFS) /PP(FS)
Pr(Ex N Fs, NFg) /Pr(Fs, N Fg)
Pr(Ex N Fs, | Fs,) Pr(Fs)) /

Pr(Fs, | Fs,) Pr(Fs,)
Pr'( Ek [ Fsl I FSZ) / Pr'(l‘::s1 | FSZ)
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Proof: Inductive Case 1 (4)
From the previous equality, we have
Pr( Ex | M c s —E;)
= Pr(Ex NFs | Fs,)/ Pr(Fs | Fs))
<Pr(Ec| Fs,)/ Pr(Fs | Fs))

= Pr(E,)/ Pr(Fs, | Fs)
S Xk H(k,J) inG (I‘XJ) / Pr‘(Fsl l FSZ) (EQUGTiOH 1)
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Proof: Inductive Case 1 (5)
Now, we label the element of S; by {yi, Y,,... Y.} :
Pr(Fs, | Fs,)=Pr((),cs, —E; | [, —E))
= Ty PRy, | Moctsors ~E, N s, <E) **
= 1y (1-PrE, | Netrors €, NN e s, =€)

> H’r:l to P ( 1 - XYT) .. [by induction hypothesis]
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Proof: Inductive Case 1 (6)

So, combining this with Equation 1, we have

< X H(k,j) ne (1-X;) / Pr'([:s1 | Fsz) < X

Thus, 15t statement is true for |S|=h+1
=> This proves Inductive Case 1

It remains to show Inductive Case 2 is true
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Proof: Inductive Case 2

Inductive Case 2: Assume 157 and 2nd
statement are true for |S| up to h+l

Then, consider the case when |S|= h+2
Pr(N; s =E;) = Pr(N &)
=11, .. Pr(=Es | [ izg 401 —Es)
=11, ... (1- Pr(Es | (i1 4ot ﬁEsf))

Jelsy,s2, . She2!

> Hrzl to he? (1 - Xsr) .. [by induction hypothesis]
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Conclusion
Since [l ;o2 (1-x,) =11 .5 (1-x)>0

Thus, 2nd statement is true for |S|=h+2
=> This proves Inductive Case 2

By induction, we can then show that 2"
statement is true for |S|=n

Consequently, we have
Pr(no BAD events) = Pr(( ), ...y —E))

Z HJZ]. ton (I-XJ) > O
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Lovasz Local Lemma
(Symmetric Case -- revisited)

The general case can immediately improve
the symmetric case by replacing the

condition 4pd < 1+to ep(d+l) <1, so that
we can apply it in more situations

The proof is by setting all x;, = 1/(d+1)

= Then, we can show that
Pr(E) <p < x, H(i,j) G (I-XJ-) .. [how?]

so that we can apply the General Case
(Left as an Exercise)
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