CS5314
 Randomized Algorithms

Lecture 20: Probabilistic Method (Lovasz Local Lemma)

Objectives

- Introduce Lovasz Local Lemma (LLL)
- one of the most elegant and useful tools in the probabilistic method
- Two versions:
- symmetric case
- general case

Lovasz Local Lemma

- Let $E_{1}, E_{2}, \ldots, E_{n}$ be a set of BAD events
- Suppose each occurs with prob <1

Fact: If they are mutually independent, it is easy to see that

$$
\operatorname{Pr}(\text { no } B A D \text { events })>0 \quad . .[\text { why? }]
$$

- However, in many natural scenario, the BAD events are not mutually independent

Problem: Can we still easily show that $\operatorname{Pr}($ no $B A D$ events $)>0$?

Lovasz Local Lemma (2)

- In general, probably not...
- But, if there are not many dependency among the BAD events, then the set of events are 'roughly' mutually independent \rightarrow we may still be able to show $\operatorname{Pr}($ no $B A D$ events $)>0$...
- Lovasz Local Lemma gives sufficient conditions when we can do so ...
- It relies on a concept of dependency graph defined as follows (next slide)

Dependency Graph

Let E be an event
Definition: E is mutually independent of a set of events $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ if for any $I \subseteq[1, n], \operatorname{Pr}\left(E \mid \cap_{j \in I} E_{j}\right)=\operatorname{Pr}(E)$
Definition: A dependency graph for a set of events $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ is a graph $G=(V, E), V=\{1,2, \ldots, n\}$ such that
for any j, E_{j} is mutually independent of the events $\left\{E_{k} \mid(j, k) \notin E\right\}$

Dependency Graph (2)

Test your understanding:

1. Let S be a set of pair-wise independent events. Is a graph with no edges always a dependency graph of S?
2. Let S be a set of events.

Is the dependency graph of S unique?

The answers are NO for both questions...

Dependency Graph (3)

Consider flipping a fair coin twice.
Let $E_{1}=$ the first flip is head
$E_{2}=$ the second flip is tail
$E_{3}=$ the two flips are the same
\rightarrow the events are pairwise independent
We see that if a graph has less than 2 edges, it must not be a dependency graph
On the other hand, any graph with 2 or more edges is a dependency graph !!!

Lovasz Local Lemma (Symmetric Case)

Theorem: Let G be a dependency graph of a set of BAD events $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$. If
(i) $\operatorname{Pr}\left(E_{j}\right) \leq p<1$ for each E_{j},
(ii) $1 \leq \operatorname{maxdeg}(G) \leq d$, and
(iii) $4 \mathrm{pd} \leq 1$
then $\operatorname{Pr}($ no $B A D$ events $)>0$
Remark: If $\operatorname{maxdeg}(G)=0$, then $\operatorname{Pr}($ no BAD events $)>0$ since all events are mutually independent

Proof

Let $S=\left\{s_{1}, S_{2}, \ldots\right\}$ be a subset of $\{1,2, \ldots, n\}$

- The proof is based on induction
- In particular, we show two statements are true alternately:
(1) $\operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right) \leq 2 p \quad$ for all S,
with $|S|=0,1,2, \ldots, n-1$
(2) $\operatorname{Pr}\left(\cap_{j \in S} \neg E_{j}\right)>0$
for all S,
with $|S|=1,2, \ldots, n$

Proof (2)

- The base case(s) are : $1^{\text {st }}$ statement with $|S|=0$, and $2^{\text {nd }}$ statement with $|S|=1$
- For the inductive steps:
(1) Assume $1^{\text {st }}$ statement is true for $|S| \leq h$ and $2^{\text {nd }}$ statement is true for $|S| \leq h+1$
\rightarrow prove $1^{\text {st }}$ statement is true for $|S|=h+1$
(2) Assume $1^{\text {st }}$ statement is true for $|S| \leq h+1$ and $2^{\text {nd }}$ statement is true for $|S| \leq h+1$,
\rightarrow prove $2^{\text {nd }}$ statement is true for $|S|=h+2$

Proof (3)

Consequently, by induction, we can prove the $1^{\text {st }}$ statement when $|S|=1$, and then the $2^{\text {nd }}$ statement when $|S|=2$, and then the $1^{\text {st }}$ statement when $|S|=2$, and then the $2^{\text {st }}$ statement when $|S|=3$, and so on...

Proof: Base Cases

Base Case 1: $1^{\text {st }}$ statement, $|S|=0$
In this case, we have

$$
\operatorname{Pr}\left(E_{k} \mid \cap_{j \in s} \neg E_{j}\right)=\operatorname{Pr}\left(E_{k}\right) \leq p \leq 2 p
$$

\rightarrow So this case is true
Base Case 2: $2^{\text {nd }}$ statement, $|S|=1$
In this case, we have

$$
\operatorname{Pr}\left(\cap_{j \in S} \neg E_{j}\right)=1-\operatorname{Pr}\left(E_{s_{1}}\right) \geq 1-p>0
$$

\rightarrow So this case is true

Proof: Inductive Case 1

Inductive Case 1: Assume $1^{\text {st }}$ statement is
true for $|S|=0,1,2, \ldots, h$, and $2^{\text {nd }}$
statement is true for $|S|=1,2, \ldots, h+1$
Then, consider the case when $|S|=h+1$
For a particular E_{k}, let

$$
\left.\begin{array}{ll}
S_{1}=\{j \in S \mid & (k, j) \text { is an edge in the } \\
& \text { dependency graph } G\}
\end{array}\right\}
$$

Note: Since maxdeg(G) $\leq \mathrm{d}$, so $\left|S_{1}\right| \leq d$

Proof: Inductive Case 1 (2)

If $\left|S_{2}\right|=|S|$, then E_{k} is mutually independent of the events $\neg E_{j}$ for all j in S
In this case:

$$
\operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right)=\operatorname{Pr}\left(E_{k}\right) \leq p \leq 2 p
$$

Otherwise, $\left|S_{2}\right|<|S|$.
In this case, we introduce a notation:
Let $F_{S}=\bigcap_{j \in S} \neg E_{j}$.
Similarly, we define $F_{S_{1}}$ and $F_{S_{2}}$

Proof: Inductive Case 1 (3)

Note: $F_{S}=F_{S_{1}} \cap F_{S_{2}}$
So, $\operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right)$

$$
\begin{aligned}
= & \operatorname{Pr}\left(E_{k} \mid F_{S}\right)=\operatorname{Pr}\left(E_{k} \cap F_{S}\right) / \operatorname{Pr}\left(F_{s}\right) \\
= & \operatorname{Pr}\left(E_{k} \cap F_{s_{1}} \cap F_{s_{2}}\right) / \operatorname{Pr}\left(F_{s_{1}} \cap F_{s_{2}}\right) \\
= & \operatorname{Pr}\left(E_{k} \cap F_{s_{1}} \mid F_{s_{2}}\right) \operatorname{Pr}\left(F_{s_{2}}\right) / \\
& \operatorname{Pr}\left(F_{s_{1}} \mid F_{S_{2}}\right) \operatorname{Pr}\left(F_{s_{2}}\right) \\
= & \operatorname{Pr}\left(E_{k} \cap F_{s_{1}} \mid F_{s_{2}}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right)
\end{aligned}
$$

Proof: Inductive Case 1 (4)

From the previous equality, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right) \\
& =\operatorname{Pr}\left(E_{k} \cap F_{s_{1}} \mid F_{S_{2}}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right) \\
& \leq \operatorname{Pr}\left(E_{k} \mid F_{s_{2}}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{S_{2}}\right) \\
& =\operatorname{Pr}\left(E_{k}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right) \\
& \leq \mathrm{p} / \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right) \quad \text { (Equation 1) }
\end{aligned}
$$

Proof: Inductive Case 1 (5)

On the other hand, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right)=\operatorname{Pr}\left(\cap_{j \in s_{1}} \neg E_{j} \mid \cap_{j \in s_{2}} \neg E_{j}\right) \\
& =1-\operatorname{Pr}\left(\cup_{j \in s_{1}} E_{j} \mid \cap_{j \in s_{2}} \neg E_{j}\right) \\
& \geq 1-\sum_{j \in s_{1}} \operatorname{Pr}\left(E_{j} \mid \cap_{j \in s_{2}} \neg E_{j}\right) \\
& \geq 1-\sum_{j \in s_{1}} 2 p \quad \ldots \quad . \quad[\text { by induction hypothesis] } \\
& \geq 1-2 p d \quad\left[\text { since }\left|s_{1}\right| \leq d\right] \\
& \geq 1 / 2 \quad \quad \ldots \text { since } 4 p d \leq 1]
\end{aligned}
$$

Proof: Inductive Case 1 (6)

So, combining this with Equation 1, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right) \\
& \leq p / \operatorname{Pr}\left(F_{s_{1}} \mid F_{S_{2}}\right) \leq 2 p
\end{aligned}
$$

Thus, $1^{\text {st }}$ statement is true for $|S|=h+1$
\rightarrow This proves Inductive Case 1

It remains to show Inductive Case 2 is true

Proof: Inductive Case 2

Inductive Case 2: Assume $1^{\text {st }}$ and $2^{\text {nd }}$ statement are true for $|S|$ up to $h+1$
Then, consider the case when $|S|=h+2$

$$
\begin{aligned}
& \operatorname{Pr}\left(\bigcap_{j \in s} \neg E_{j}\right)=\operatorname{Pr}\left(\cap_{j \in\left\{s_{1}, s_{2}, \ldots, s_{+2}\right\}} \neg E_{j}\right) \\
& =\prod_{r=1 \text { to h+2 }} \operatorname{Pr}\left(\neg E_{s_{r}} \mid \cap_{t=1 \text { to } r-1} \neg E_{s_{+}}\right) \\
& =\prod_{r=1 \text { to h+2 }}\left(1-\operatorname{Pr}\left(E_{s_{r}} \mid \cap_{t=1 \text { to } r-1} \neg E_{s_{+}}\right)\right) \\
& \geq \prod_{r=1 \text { to h+2 }}(1-2 p)>0 \quad \ldots \text { [by induction hypothesis] }
\end{aligned}
$$

Conclusion

Thus, 2nd statement is true for $|S|=h+2$
\rightarrow This proves Inductive Case 2

- By induction, we can then show that $2^{\text {nd }}$ statement is true for $|S|=n$
- That is, $\operatorname{Pr}\left(\cap_{j \in S} \neg E_{j}\right)>0$ when $|S|=n$

Consequently, we have

$$
\operatorname{Pr}(\text { no } B A D \text { events })=\operatorname{Pr}\left(\cap_{j \in s} \neg E_{j}\right)>0
$$

Example: Edge-Disjoint Paths

- There are 50 pairs of users in a network system, each pair wants to obtain a dedicated path for communication
- That is, they do not want their path to share any edge with the path chosen by others
- Now, we know that each pair has a set of 2000 possible paths to choose, and each such path "crashes" with at most 5 paths in the set of any other pair

Question: Can they get a dedicated path? Ans. Yes

Edge-Disjoint Paths

In fact, we can show the following based on the Lovasz Local Lemma:
Let $F_{j}=$ set of m paths pair- j can choose
Theorem: If for all $i \neq j$, each path in F_{i} "clashes" with no more than k paths in F_{j}, then, when $8 \mathrm{nk} / \mathrm{m} \leq 1$, there exists a way to choose n edge-disjoint paths connecting the n pairs.
How to prove?

Proof

- Let $\mathrm{E}_{\mathrm{i}, \mathrm{j}}=$ event that paths selected by pair-i and pair-j clashes
$\rightarrow \operatorname{Pr}\left(E_{i, j}\right) \leq \mathrm{k} / \mathrm{m}$
- Let $G=$ dependency graph of these events
- Since $E_{i, j}$ is dependent only on events $E_{i, x}$ or $E_{y, j} \rightarrow$ at most $2 n$ events
- Now, by setting $p=k / m$ and $d=2 n$, $\operatorname{Pr}\left(\mathrm{E}_{\mathrm{i}, \mathrm{j}}\right) \leq \mathrm{p}, \operatorname{maxdeg}(G) \leq \mathrm{d}$, and $4 \mathrm{pd} \leq 1$
\rightarrow We can apply LLL, and theorem follows

Lovasz Local Lemma (General Case)

Next, we describe the general case of LLL (the proof is extremely similar to the symmetric case):

Theorem: Let G be a dependency graph of a set of BAD events $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$.
Assume that there are $x_{1}, x_{2}, \ldots, x_{n} \in[0,1)$
such that $\operatorname{Pr}\left(E_{i}\right) \leq x_{i} \prod_{(i, j) \text { in } G}\left(1-x_{j}\right)$, then

$$
\operatorname{Pr}(\text { no } B A D \text { events }) \geq \prod_{j=1 \text { ton }}\left(1-x_{j}\right)
$$

Proof

Let $S=\left\{s_{1}, s_{2}, \ldots\right\}$ be a subset of $\{1,2, \ldots, n\}$

- The proof is based on induction, where we show two statements are true alternately:
(1) $\operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right) \leq x_{k} \quad$ for all S,
with $|S|=0,1,2, \ldots, n-1$
(2) $\operatorname{Pr}\left(\cap_{j \in S} \neg E_{j}\right) \geq \prod_{j \in S}\left(1-x_{j}\right)>0$
for all S, with $|S|=1,2, \ldots, n$

Proof: Base Cases

Base Case 1: $1^{\text {st }}$ statement, $|S|=0$
In this case, we have

$$
\operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right)=\operatorname{Pr}\left(E_{k}\right) \leq x_{k} \ldots[\text { why?? }]
$$

\rightarrow So this case is true
Base Case 2: $2^{\text {nd }}$ statement, $|S|=1$
In this case, we have

$$
\operatorname{Pr}\left(\bigcap_{j \in s} \neg E_{j}\right)=1-\operatorname{Pr}\left(E_{s_{1}}\right) \geq 1-x_{s_{1}}>0
$$

\rightarrow So this case is true

Proof: Inductive Case 1

Inductive Case 1: Assume $1^{\text {st }}$ statement is true for $|S|=0,1,2, \ldots, h$, and $2^{\text {nd }}$ statement is true for $|S|=1,2, \ldots, h+1$
Then, consider the case when $|S|=h+1$
For a particular E_{k}, let

$$
\left.\begin{array}{ll}
S_{1}=\{j \in S \mid & (k, j) \text { is an edge in the } \\
& \text { dependency graph } G\}
\end{array}\right\}
$$

Proof: Inductive Case 1 (2)

If $\left|S_{2}\right|=|S|$, then E_{k} is mutually independent of the events $\neg E_{j}$ for all j in S
In this case:

$$
\operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right)=\operatorname{Pr}\left(E_{k}\right) \leq x_{k}
$$

Otherwise, $\left|S_{2}\right|<|S|$.
In this case:
Let $F_{S}=\bigcap_{j \in S} \neg E_{j}$.
Similarly, we define $F_{S_{1}}$ and $F_{S_{2}}$

Proof: Inductive Case 1 (3)

Note: $F_{S}=F_{S_{1}} \cap F_{S_{2}}$
So, $\operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right)$

$$
\begin{aligned}
= & \operatorname{Pr}\left(E_{k} \mid F_{S}\right)=\operatorname{Pr}\left(E_{k} \cap F_{S}\right) / \operatorname{Pr}\left(F_{s}\right) \\
= & \operatorname{Pr}\left(E_{k} \cap F_{s_{1}} \cap F_{s_{2}}\right) / \operatorname{Pr}\left(F_{s_{1}} \cap F_{s_{2}}\right) \\
= & \operatorname{Pr}\left(E_{k} \cap F_{s_{1}} \mid F_{s_{2}}\right) \operatorname{Pr}\left(F_{s_{2}}\right) / \\
& \operatorname{Pr}\left(F_{s_{1}} \mid F_{S_{2}}\right) \operatorname{Pr}\left(F_{s_{2}}\right) \\
= & \operatorname{Pr}\left(E_{k} \cap F_{s_{1}} \mid F_{s_{2}}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right)
\end{aligned}
$$

Proof: Inductive Case 1 (4)

From the previous equality, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{k} \mid \cap_{j \in s} \neg E_{j}\right) \\
& =\operatorname{Pr}\left(E_{k} \cap F_{s_{1}} \mid F_{s_{2}}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right) \\
& \leq \operatorname{Pr}\left(E_{k} \mid F_{s_{2}}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right) \\
& =\operatorname{Pr}\left(E_{k}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{S_{2}}\right) \\
& \left.\leq x_{k} \prod_{(k, j) i n G}\left(1-x_{j}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right) \ldots \text { (Equation } 1\right)
\end{aligned}
$$

Proof: Inductive Case 1 (5)

Now, we label the element of S_{1} by $\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$:

$$
\begin{aligned}
& \operatorname{Pr}\left(F_{s_{1}} \mid F_{s_{2}}\right)=\operatorname{Pr}\left(\cap_{j \in s_{1}} \neg E_{j} \mid \cap_{j \in s_{2}} \neg E_{j}\right) \\
& =\prod_{t=1 \text { to } r} \operatorname{Pr}\left(\neg E_{y_{y_{t}}} \mid \cap_{v=1 \text { to }+1} \neg E_{y_{v}} \cap \cap_{j \in s_{2}} \neg E_{j}\right) * * \\
& =\prod_{t=1 \text { tor }}\left(1-\operatorname{Pr}\left(E_{y_{t}} \mid \cap_{v=1 \text { to }+-1} \neg E_{y_{v}} \cap \cap_{j \in s_{2}} \operatorname{EE}_{j}\right)\right) \\
& \geq \prod_{t=1 \text { tor }}\left(1-x_{y_{+}}\right) \quad \ldots[\text { by induction hypothesis] } \\
& \geq \prod_{(k, j) \text { in } G}\left(1-x_{j}\right) \quad \ldots[\text { why ?? }]
\end{aligned}
$$

Proof: Inductive Case 1 (6)

So, combining this with Equation 1, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{k} \mid \cap_{j \in S} \neg E_{j}\right) \\
& \leq x_{k} \prod_{(k, j) i n G}\left(1-x_{j}\right) / \operatorname{Pr}\left(F_{s_{1}} \mid F_{S_{2}}\right) \leq x_{k}
\end{aligned}
$$

Thus, $1^{\text {st }}$ statement is true for $|S|=h+1$
\rightarrow This proves Inductive Case 1
It remains to show Inductive Case 2 is true

Proof: Inductive Case 2

Inductive Case 2: Assume $1^{\text {st }}$ and $2^{\text {nd }}$ statement are true for $|S|$ up to $h+1$
Then, consider the case when $|S|=h+2$

$$
\begin{aligned}
& \operatorname{Pr}\left(\bigcap_{j \in S} \neg E_{j}\right)=\operatorname{Pr}\left(\bigcap_{j \in\left\{s_{1}, s_{2}, \ldots, s_{h+2}\right\}} \neg E_{j}\right) \\
& =\prod_{r=1+h+2} \operatorname{Pr}\left(\neg E_{s_{r}} \mid \bigcap_{t=1+0 r-1} \neg E_{s_{+}}\right) \\
& =\prod_{r=1+h+2}\left(1-\operatorname{Pr}\left(E_{s_{r}} \mid \bigcap_{t=1 \text { to } r-1} \neg E_{s_{+}}\right)\right) \\
& \geq \prod_{r=1+h h+2}\left(1-x_{s_{r}}\right) \quad \ldots \text { [by induction hypothesis] }
\end{aligned}
$$

Conclusion

since $\prod_{r=1 \text { to } h+2}\left(1-x_{s_{r}}\right)=\prod_{j \in S}\left(1-x_{j}\right)>0$
Thus, 2nd statement is true for $|S|=h+2$
\rightarrow This proves Inductive Case 2
By induction, we can then show that $2^{\text {nd }}$ statement is true for $|S|=n$
Consequently, we have

$$
\begin{aligned}
& \operatorname{Pr}(\text { no BAD events })=\operatorname{Pr}\left(\bigcap_{j \in\{1,2, \cdots, n\}} \neg E_{j}\right) \\
& \geq \prod_{j=1 \text { ton }}\left(1-x_{j}\right)>0
\end{aligned}
$$

Lovasz Local Lemma (Symmetric Case -- revisited)

The general case can immediately improve the symmetric case by replacing the condition $4 \mathrm{pd} \leq 1$ to ep $(\mathrm{d}+1) \leq 1$, so that we can apply it in more situations
The proof is by setting all $x_{i}=1 /(d+1)$
\rightarrow Then, we can show that

$$
\operatorname{Pr}\left(E_{i}\right) \leq p \leq x_{i} \prod_{(i, j) \text { in } G}\left(1-x_{j}\right) \quad \ldots \text { [how?] }
$$

so that we can apply the General Case (Left as an Exercise)

