CS5314 Randomized Algorithms

Lecture 19: Probabilistic Method (2nd Moment, Condition Expectation Inequality)

1

Objectives

- Introduce two further techniques (apart from Counting, Expectation, Sample-and-Modify) to show (non-)existence of a certain object
 - Second Moment Method
 - Based on the Chebyshev inequality
 - Conditional Expectation Inequality
 - Based on Binomial RV

Second Moment Method

The following is the core of this method :

Theorem: If X is a nonnegative integer-valued random variable, then $Pr(X = 0) \le Var[X] / (E[X])^2$

Proof: $Pr(X = 0) \le Pr(|X - E[X]| \ge E[X])$ $\le Var[X] / (E[X])^2$

Remarks: (1) if RHS < 1 \rightarrow there is an object with X > 0; (2) if RHS $\approx 0 \rightarrow$ a random object almost always has X > 0

Will K_4 exist in $G_{n,p}$?

Next, we shall show a bound f such that :

- 1. when $p \ll f$, a random graph from $G_{n,p}$ does not contain a 4-Clique (K₄) w.h.p.
- 2. when $p \gg f$, a random graph from $G_{n,p}$ contains a K_4 w.h.p.

We call f: threshold function for K_4 to occur in $G_{n,p}$

Will K_4 exist in $G_{n,p}$? (2) Theorem: Suppose $p = o(n^{-2/3})$. Let G be a random graph from $G_{n,p}$. Then, for any $\varepsilon > 0$ and sufficiently large n, $Pr(G \text{ contains } K_4) < \varepsilon$

How to prove?? (By Basic Counting / Expectation Argument)

Proof

Let X_j be an indicator such that: $X_j = 1$ if j^{th} subset of four vertices is a K_4 in G $X_j = 0$ otherwise

→
$$E[X_j] = Pr(X_j = 1) = p^6$$

Let X denote the number of K_4 in G $\Rightarrow E[X] = C(n,4)p^6 = o(n^4 n^{-4}) = o(1)$

Proof (2)

This implies that for large enough n, $E[X] < \epsilon$

Since X is a non-negative integer, we have :

$$\begin{split} \mathsf{E}[\mathsf{X}] &= \sum_{j=1,2,\dots} j \operatorname{Pr}(\mathsf{X}=\mathsf{j}) \\ &\geq \sum_{j=1,2,\dots} \operatorname{Pr}(\mathsf{X}=\mathsf{j}) \\ &= \operatorname{Pr}(\mathsf{X}\geq \mathsf{1}) \end{split}$$

Will K_4 exist in $G_{n,p}$? (3)

Theorem: Suppose that $\mathbf{p} = \omega(n^{-2/3})$. Let G be a random graph from $G_{n,p}$. Then, for any $\varepsilon > 0$ and sufficiently large n, Pr(G does not contain K_4) < ε

Let X = # of K₄ in G Proof Idea: By Second Moment Method Compute E[X] and Var[X]

Before that, we introduce a simple result ...

A Simple Result

Lemma: Let
$$Y_1, Y_2, ..., Y_m$$
 be m indicators,
and $Y = Y_1 + Y_2 + ... + Y_m$. Then,
 $Var[Y] \le E[Y] + \sum_{i \neq j} Cov(Y_i, Y_j)$

Proof: Since Y_j is an indicator, $E[Y_j^2] = E[Y_j]$ $Var[Y_j] = E[Y_j^2] - (E[Y_j])^2$ $\leq E[Y_j^2] = E[Y_j]$

The lemma thus follows, since

$$Var[Y] = \sum_{j} Var[Y_{j}] + \sum_{i \neq j} Cov(Y_{i}, Y_{j})$$

Back to the Proof ...

- Let X_j be an indicator such that: $X_j = 1$ if the j^{th} subset of four vertices is a K_4 in G $X_j = 0$ otherwise
- We wish to bound Var[X] = Var[ΣX_j] and apply second moment method
 - By the previous lemma, we can first consider the values of Cov(X_i, X_j)

Back to the Proof ... (2)

• The value of $Cov(X_i, X_j)$ depends on whether the ith subset of four vertices share any vertex with the jth subset

There are four cases: Case 0: They share no vertex Case 1: They share 1 vertex Case 2: They share 2 vertices Case 3: They share 3 vertices

Back to the Proof ... (3)

For Case 0 (they share no vertex):

→ X_i and X_j are independent → $Cov(X_i, X_j) = 0$

For Case 1 (they share 1 vertex):

→ X_i and X_j are independent (why?)
→ $Cov(X_i, X_j) = 0$

Back to the Proof ... (4)

For Case 2 (they share 2 vertices):

$$E[X_{i}X_{j}] = Pr(X_{i}X_{j} = 1)$$

= Pr(X_i = 1 | X_j = 1) Pr(X_j = 1)
= p⁵ * p⁶ = p¹¹

→ $Cov(X_i, X_j) = E[X_iX_j] - E[X_i]E[X_j]$ $\leq E[X_iX_j] = p^{11}$

Back to the Proof ... (5)

For Case 3 (they share 3 vertices),

$$E[X_i X_j] = Pr(X_i X_j = 1)$$

= Pr(X_i = 1 | X_j = 1) Pr(X_j = 1)
= p³ * p⁶ = p⁹

→ $Cov(X_i, X_j) = E[X_iX_j] - E[X_i]E[X_j]$ $\leq E[X_iX_j] = p^9$

Back to the Proof ... (6) → Var[X] \leq E[X] + $\sum_{i \neq j}$ Cov(X_i,X_j) = C(n,4) p^6 + $\Sigma_{i \neq j}$ Cov(X_i,X_j) $\leq C(n,4) p^6 + (#Case2) p^{11} + (#Case3) p^9$ $= C(n,4)p^{6} + O(C(n,6)p^{11}) + O(C(n,5)p^{9})$ = $o(n^8p^{12})$... [why?? Recall: $p = \omega(n^{-2/3})$] On the other hand, since $(E[X])^2 = (C(n,4)p^6)^2 = \Theta(n^8p^{12})$ \rightarrow Var[X] / (E[X])² = o(1) \rightarrow theorem follows

Conditional Expectation Inequality

- Let X be a random variable such that X > 0 ⇔ a certain object exists
 E.g., X = # of K₄ in a graph G chosen from G_{n,p}
 → In this case, X > 0 implies the existence of K₄ in G
- If X can be expressed as a sum of indicators (which is true in many situations), we can usually get a simpler proof of existence via the next theorem

Conditional Expectation Inequality Lemma: Let $X_1, X_2, ..., X_n$ be **n** indicators, and $X = X_1 + X_2 + ... + X_n$. Then, $Pr(X > 0) \ge \sum_{j=1 \text{ to } n} (Pr(X_j = 1) / E[X|X_j = 1])$ Note: We do not require X_i 's to be independent Proof: Let Y = 1/X if X > 0Y = 0 if X = 0Note: XY is an indicator random variable!! → Pr(X > 0) = Pr(XY = 1) = E[XY] ...

Proof (cont) So, $Pr(X > 0) = E[XY] = \sum_{j=1 \text{ to } n} E[X_jY]$ $= \sum_{i=1 \text{ to } n} (E[X_i Y | X_i = 1] Pr(X_i = 1) +$ $E[X_i Y | X_i = 0] Pr(X_i = 0)$ $= \sum_{j=1 \text{ to } n} \left(E[Y|X_j = 1] Pr(X_j = 1) \right) \quad ... \text{ [why?]}$ $= \sum_{i=1 \text{ to } n} (E[1/X|X_i = 1] Pr(X_i = 1))$ $\geq \sum_{i=1 \text{ to n}} \left(\Pr(X_i = 1) / E[X|X_i = 1] \right) \dots \text{[Jensen]}$

This completes the proof

Existence of K_4 in $G_{n,p}$ (revisited)

- Now, we revisit the theorem in Page 8 and give a simpler proof
- Recall: X = # of K_4 in a random graph G chosen from from $G_{n,p}$
 - And X_j be an indicator such that:
 - $X_j = 1$ if the jth subset of four vertices is a K_4 in G

 $X_j = 0$ otherwise

 \rightarrow X = X₁ + X₂ + ... + X_{C(n,4)}

Existence of K_4 in $G_{n,p}$ (revisited) First, recall that $Pr(X_j = 1) = p^6$

- In order to apply conditional expectation inequality to prove existence of K_4 in $G_{n,p}$, we want to bound $E[X | X_j = 1]$
- By linearity of expectation, we have

$$E[X | X_{j} = 1] = \sum_{k=1 \text{ to } C(n,4)} E[X_{k} | X_{j} = 1]$$

= $\sum_{k=1 \text{ to } C(n,4)} Pr(X_{k} = 1 | X_{j} = 1)$... [why?]

Existence of K_4 in $G_{n,p}$ (revisited) Question: What is $Pr(X_k = 1 | X_i = 1)$? Ans. ... depends on the number of vertices shared by jth and kth subset value of Pr # of k's Share 0 vertex: C(n-4,4) **p**⁶ 4 C(n-4,3) Share 1 vertex: **p**⁶ Share 2 vertices: **p**⁵ 6 C(n-4,2) **p**³ 4 C(n-4,1)Share 3 vertices: Share 4 vertices: 1

Existence of K_4 in $G_{n,p}$ (revisited) Thus, E[X | $X_j = 1$]

$$= \sum_{k=1 \text{ to } n_{C_4}} \Pr(X_k = 1 \mid X_j = 1)$$

- = $p^6 \times C(n-4,4) + p^6 \times 4 C(n-4,3)$
 - + p⁵×6 C(n-4,2) + p³ × 4 C(n-4,1) + 1
- → As n → ∞ and p = ω (n^{-2/3})

 $\text{Pr}(X > 0) \geq \sum_{j=1 \text{ to } C(n,4)} \left(\text{Pr}(X_j = 1) / \text{E}[X|X_j = 1] \right)$

= $C(n,4) p^6 / E[X | X_j = 1] \approx 1$

22

This completes the proof of the theorem