CSbH314
Randomized Algorithms

Lecture 18: Probabilistic Method
(De-randomization, Sample-and-Modify)



Objectives

* Introduce two topics:

De-randomize by conditional expectation

- provides a deterministic way to construct an
object with some property

Sample-and-modify
- a more advanced technique to prove the
existence of a certain object



De-randomization
(using Conditional Expectation)

Let us revisit the large-cut problem
Recall that this problem is NP-hard

We have shown that there exists a cut
of size at least m/2, and whose size is
thus at least half of the largest cut

Question: Can we construct such an
approximate large-cut explicitly?



Finding Large-Cut

Let G=(V, E) be a graph with n vertices
and m edges

Let vy, v,, ..., v, be the vertices in V

Recall that if we partition V by placing
each vertex randomly and independently
info A and B, the expected size of the
cut(A,B) is at least m/2

= Without loss of generality, we assume
that v, is placed in A



Finding Large-Cut (2)

Consider the two cases how v, is placed

Knowing v, is in A, we can actua

E
E

size of cut(A,B)

size of cut(A,B)

Questions:

V, 1S in A]

V, is in B]

ly determine
. and
(how?)

Can we make use of these values to
decide where to place v, ?



Finding Large-Cut (3)

Observation:

If our target is to find a cut whose size
is at least E[size of cut(A,B)], it cannot
be wrong to place v, in the set whose
corresponding expectation is larger

Proof: WLOG, suppose that

E
> E

size of cut(A,B)

size of cut(A,B)

V, is in B]
V, 1S 1h A]



Proof

Then,

E[size of cut(A,B)]

= E[size of cut(A,B)
E[size of cut(A,B)

v, in Al Pr(v, in A) +
v, in B] Pr(v, in B)

< E[size of cut(A,B) | v, is in B]

=> Placing v, in B ensures at least one
assignment of remaining vertices will
have cut-size > E[size of cut(A,B)]



Finding Large-Cut (4)

Knowing v, is in A, and which set (say X,)
is better to place v,, we can determine

E[size of cut(A,B) | v, in X,,v; in A]land
E[size of cut(A,B) | v, in X,,v; in B]

Question:

Can we make use of these values to
decide where to place v; ?



Finding Large-Cut (5)

Ans. Definitely Yes |

= We should place v; in the set that
maximizes the above conditional
expectation, because it ensures that one
assignment of remaining vertices has
cut-size > E[size of cut(A,B)|v, in X,]

= By our choice of X,, such an assignment
has cut-size > E[size of cut(A,B)]



Finding Large-Cut (6)

Continue the above process, we can
decide where to place v,, vs, ..., v,

Let X5, X3, ..., X, be the corresponding
set each are placed

Then, we must have

E[size of cut (A,B)]
< E[size of cut (A,B) | v;in X, for j=2,.., n]
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Finding Large-Cut (7)

Since
m/2 < E[size of cut(A,B)]

and
E[size of cut(A,B) | v;in X; for j=2,..., n]
= size of cut (A,B)
when v isin X; for j=2,.,n

= We obtain a cut (deterministically) whose
size is at least m/2 |l
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Sample-and-Modify

In Basic counting/Conditional expectation :
- we construct some probability space

- show that an object with some desired
properties can be picked directly

In Sample-and-Modify :
- we first select an object randomly, but
it may not have the desired properties

- then we modify the object to get the
desired properties
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Independent Set

Definition: An independent set of a graph G
is a set of vertices with no edges
between them

Finding an independent set with largest
number of vertices is NP-hard

Let's use Sample-and-Modify to obtain a
lower bound on size of the largest
independent set
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Independent Seft (2)

Theorem: Let G be a graph with n vertices
and m edges. Then G has an independent
set with at least n2/(4m) vertices

Proof: Let d =2m/n = ave degr'ee (wlog, assume
each connected component has > 3 vertices, so d > 1)

Consider the following:

1. Delete each vertex (and its incident edges)
independently with probability 1 - 1/d

2. For each remaining edge, remove it by
removing randomly one of its vertex
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G

@ Vertex to be removed

'ﬂ’\j

After Step 1

O

After Step 2

After Step 1: may not be independent

After Step 2 : must be independent (why?)
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Proof (cont)

_et X = # vertices after Step 1
_et Y = # edges after Step 1
_et Z = # vertices after Step 2

Target: Can we bound E[Z] ?

Firstly,
E[X]=n/d, E[Y]=m/d?=n/(2d)
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Proof (cont)

Then, we have
L > X-=-Y . (whynotZ=X-Y?)
So, E[Z] > E[X-Y]
= E[X] - E[Y]
= n/(2d) = n2/(4m)

=> Theorem follows from expectation
argument
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Graphs with Large Girth

Definition: The girth of a (simple) graph G
is the length of the smallest cycle

e

girth = 4 girth = 3

E.g.,
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Graphs with Large Girth (2)

Intuitively, we expect graphs with large
average degree to have small girth

However, this is not necessarily true ...
We start by showing the following theorem:

Theorem: For any integer k > 3, there is a
graph with n vertices, at least nl*/k/4
edges, and girth at least k

How to prove?
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Proof

Consider the following algorithm:
1. Set p = nl/k!
2. Select a graph 6 randomly from G, ,

3. For any cycle that appears in G with
length less than k, remove one edge
randomly in that cycle

=> the graph obtained after Step 3 have
girth at least k

(Did you see that we are using the Sample-and-Modify?)
20



Proof (2)

It remains to find # edges in the final graph
First, let X = # edges in G
2 E[X] =n(n-1)p/2

= (1/2) n*¥/k(1-1/n) > (1/3) nl+l/k

Next, let Y = # cycles in G with length < k

- observe that any specific cycle of
length j occurs with probability p!
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Proof (3)

Since possible # length-j cycle
= n(n-1)(n-2)...(n-j+1)/(2})

> E[Y]= 2541 P (n-1)(n-2)..(n-j+1)/(2))
< 23 tokt PO
= 2 =3 o k-1 /K < 2 =3 o k-1 NV

< kntk-1/k < for large enough n
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Proof (4)
Let Z = # edges after Step 3

Then, we have Z > X -Y
So, E[Z] > E[X-Y]
= E[X] - E[Y]
> (1/3) nt*lVk - n
> (1/4) nl+l/k

= Theorem follows

.. (Why not Z = X-Y?)

for large enough n

for large enough n
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Graphs with Large Girth (3)

The previous theorem immediately gives
the following corollary:

Corollary: For any integer k > 3 and any
positive real d representing the average
degree, there is a graph with n vertices,
at least nd/2 edges, and girth at least k

Proof: Choose sufficiently large n such that
nl/k > 2d
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Graphs with Large Girth (4)

A related problem is as follows:
Let G be a (simple) graph

Definition: The chromatic number, y(6), is
the minimum # colors needed to color
vertices of G such that no adjacent
vertices have the same color

e

x(G) =2 v(G) = 3
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Large ¢(G) and Large Girth

Intuitively, we expect graphs with large
chromatic number to have small girth

However, this is not necessarily true...

The theorem be

Theorem: For a

ow is due to Erdés (1959):

| k> 3 and positive c, there

is a graph with %(G) at least ¢ and
girth at least k

How to prove?
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Proof

Consider the following algorithm:

1. Setp = nl/kl

2. Select a graph G randomly from 6, ,
3. For any cycle that appears in G with

length less than k, remove one vertex
randomly in that cycle

= the graph obtained after Step 3 have
girth at least k
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Proof (2)

Let Y = # cycles in G with length less than k
As shown before:

ELY] = 23 1011 P (N-1)(n-2)...(n-j+1)/(2))
< knlk-2/k = o(n) for large enough n
Then, by Markov inequality,
Pr(Y > n/2) = o(1) for large enough n
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Proof (3)

Next, we investigate the size of the
largest independent set in G, as this will
be related to the chromatic number

Let A = size of largest independent set in G

For any x, if A > x, there must exists a
group of x vertices such that no edges
are between them

By union bound, we have
Pr(A > x) < C(n,x) (1-pyxx-1/2
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Proof (4)

When x is slightly large, say [(3 In n) /p],
Pr(A > x) < C(n,x) (1-pyxx-1/e

< nX (l_p)x(x—l)/Z
hX e-Px(x-1)/2 =
(n e—px/2.5)x

< (n92y< = o(1)

IN

IN

(n e-p(x-l)/Z)x

for large enough n
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Proof (5)
Then, for large enough n,

we have Pr(Y >n/2) < 0.1
and Pr(A>[(3Inn)/p])< 0.1

This implies that, for large enough n
Pr((Y <n/2)N (A< [(31Inn)/p]))

>0.8>0 .. (why?)
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Proof (6)

That is, for large enough n,

we can select a graph G with less than
n/2 cycles of "short” lengths, and

whose largest independent set is at most
3Inn/p

= After removing one vertex from each
“short” cycle in this graph G, # vertices
in the resulting graph (after Step 3) > n/2

(What happens to the largest independent set?) 32



Proof (7)

Let G* = resulting graph after Step 3
Let A(G*) = size of largest indep set of G*
Obviously, A(G*) < A(G)< 3 Inn/p . (why?)
Also, A(G*) > |G*|/%(G*) .. (why?)
Combining, we get
w(G*) > |G*|/A(G*) = (n/2)/ (3 Inn/p)
= nl/k/(éln n) > ¢  for large enough n

> G* exists with girth > k, and %(6*) > ¢
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