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CS5314
Randomized Algorithms

Lecture 18: Probabilistic Method
(De-randomization, Sample-and-Modify)
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•Introduce two topics:

De-randomize by conditional expectation
–provides a deterministic way to construct an

object with some property

Sample-and-modify
–a more advanced technique to prove the

existence of a certain object

Objectives



3

• Let us revisit the large-cut problem
• Recall that this problem is NP-hard
• We have shown that there exists a cut

of size at least m/2, and whose size is
thus at least half of the largest cut

Question: Can we construct such an
approximate large-cut explicitly?

De-randomization
(using Conditional Expectation)
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• Let G=(V, E) be a graph with n vertices
and m edges

• Let v1, v2, …, vn be the vertices in V

• Recall that if we partition V by placing
each vertex randomly and independently
into A and B, the expected size of the
cut(A,B) is at least m/2

 Without loss of generality, we assume
that v1 is placed in A

Finding Large-Cut
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Consider the two cases how v2 is placed
Knowing v1 is in A, we can actually determine

E[size of cut(A,B) | v2 is in A] , and

E[size of cut(A,B) | v2 is in B] (how?)

Questions:

Can we make use of these values to
decide where to place v2 ?

Finding Large-Cut (2)
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Observation:
If our target is to find a cut whose size
is at least E[size of cut(A,B)], it cannot
be wrong to place v2 in the set whose
corresponding expectation is larger

Finding Large-Cut (3)

Proof: WLOG, suppose that
E[size of cut(A,B) | v2 is in B]

 E[size of cut(A,B) | v2 is in A]
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Then,
E[size of cut(A,B)]

= E[size of cut(A,B) | v2 in A] Pr(v2 in A) +
E[size of cut(A,B) | v2 in B] Pr(v2 in B)

· E[size of cut(A,B) | v2 is in B]

 Placing v2 in B ensures at least one
assignment of remaining vertices will
have cut-size E[size of cut(A,B)]

Proof
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• Knowing v1 is in A, and which set (say X2)
is better to place v2, we can determine

E[size of cut(A,B) | v2 in X2, v3 in A] and

E[size of cut(A,B) | v2 in X2, v3 in B]

Question:
Can we make use of these values to
decide where to place v3 ?

Finding Large-Cut (4)
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Ans. Definitely Yes !!

 We should place v3 in the set that
maximizes the above conditional
expectation, because it ensures that one
assignment of remaining vertices has
cut-size E[size of cut(A,B)|v2 in X2]

 By our choice of X2, such an assignment
has cut-size E[size of cut(A,B)]

Finding Large-Cut (5)
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• Continue the above process, we can
decide where to place v2, v3, …, vn

• Let X2, X3, …, Xn be the corresponding
set each are placed

Then, we must have

E[size of cut (A,B)]
· E[size of cut (A,B) | vj in Xj for j=2,…, n]

Finding Large-Cut (6)
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Since
m/2 · E[size of cut(A,B)]

and
E[size of cut(A,B) | vj in Xj for j=2,…, n]

= size of cut (A,B)
when vj is in Xj for j = 2,…, n

 We obtain a cut (deterministically) whose
size is at least m/2 !!!

Finding Large-Cut (7)
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In Basic counting/Conditional expectation :
– we construct some probability space
– show that an object with some desired

properties can be picked directly

In Sample-and-Modify :
– we first select an object randomly, but

it may not have the desired properties
– then we modify the object to get the

desired properties

Sample-and-Modify
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Definition: An independent set of a graph G
is a set of vertices with no edges
between them

• Finding an independent set with largest
number of vertices is NP-hard

• Let’s use Sample-and-Modify to obtain a
lower bound on size of the largest
independent set

Independent Set
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Theorem: Let G be a graph with n vertices
and m edges. Then G has an independent
set with at least n2/(4m) vertices

Independent Set (2)

Proof: Let d = 2m/n = ave degree (wlog, assume
each connected component has 3 vertices, so d 1)

Consider the following:
1. Delete each vertex (and its incident edges)

independently with probability 1 - 1/d
2. For each remaining edge, remove it by

removing randomly one of its vertex
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• After Step 1 : may not be independent

• After Step 2 : must be independent (why?)

G After Step 1 After Step 2

Vertex to be removed
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• Let X = # vertices after Step 1
• Let Y = # edges after Step 1
• Let Z = # vertices after Step 2

Target: Can we bound E[Z] ?

Firstly,
E[X] = n/d, E[Y] = m/d2 = n/(2d)

Proof (cont)
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Then, we have

Z ¸ X –Y …(why not Z = X-Y?)

So, E[Z] ¸ E[X–Y]

= E[X] –E[Y]
= n/(2d) = n2/(4m)

 Theorem follows from expectation
argument

Proof (cont)
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Definition: The girth of a (simple) graph G
is the length of the smallest cycle

E.g.,

Graphs with Large Girth

girth = 4 girth = 3
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• Intuitively, we expect graphs with large
average degree to have small girth

• However, this is not necessarily true …

We start by showing the following theorem:

Graphs with Large Girth (2)

Theorem: For any integer k 3, there is a
graph with n vertices, at least n1+1/k/4
edges, and girth at least k

How to prove?
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Consider the following algorithm:
1. Set p = n1/k-1

2. Select a graph G randomly from Gn,p

3. For any cycle that appears in G with
length less than k, remove one edge
randomly in that cycle

 the graph obtained after Step 3 have
girth at least k

(Did you see that we are using the Sample-and-Modify?)

Proof
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It remains to find # edges in the final graph
First, let X = # edges in G
 E[X] = n(n-1)p/2

= (1/2) n1+1/k(1-1/n) (1/3) n1+1/k

Next, let Y = # cycles in G with length k
– observe that any specific cycle of

length j occurs with probability pj

Proof (2)
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Since possible # length-j cycle
= n(n-1)(n-2)…(n-j+1)/(2j)

 E[Y] = j=3 to k-1 pj n(n-1)(n-2)…(n-j+1)/(2j)

j=3 to k-1 pj nj

= j=3 to k-1 nj/k j=3 to k-1 n(k-1)/k

kn(k-1)/k n for large enough n

Proof (3)
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Let Z = # edges after Step 3
Then, we have Z ¸ X –Y …(why not Z = X-Y?)

So, E[Z] ¸ E[X–Y]
= E[X] –E[Y]

(1/3) n1+1/k –n for large enough n

(1/4) n1+1/k for large enough n

 Theorem follows

Proof (4)



24

• The previous theorem immediately gives
the following corollary:

Graphs with Large Girth (3)

Corollary: For any integer k 3 and any
positive real d representing the average
degree, there is a graph with n vertices,
at least nd/2 edges, and girth at least k

Proof: Choose sufficiently large n such that
n1/k 2d
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A related problem is as follows:
Let G be a (simple) graph
Definition: The chromatic number, (G), is

the minimum # colors needed to color
vertices of G such that no adjacent
vertices have the same color

Graphs with Large Girth (4)

(G) = 2 (G) = 3
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• Intuitively, we expect graphs with large
chromatic number to have small girth

• However, this is not necessarily true…
The theorem below is due to Erdős (1959):

Large (G) and Large Girth

Theorem: For all k 3 and positive c, there
is a graph with (G) at least c and
girth at least k

How to prove?
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Consider the following algorithm:
1. Set p = n1/k-1

2. Select a graph G randomly from Gn,p

3. For any cycle that appears in G with
length less than k, remove one vertex
randomly in that cycle

 the graph obtained after Step 3 have
girth at least k

Proof
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Let Y = # cycles in G with length less than k
As shown before:

E[Y] = j=3 to k-1 pj n(n-1)(n-2)…(n-j+1)/(2j)

kn(k-1)/k = o(n) for large enough n

Then, by Markov inequality,

Pr(Y n/2) = o(1) for large enough n

Proof (2)
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• Next, we investigate the size of the
largest independent set in G, as this will
be related to the chromatic number

Let A = size of largest independent set in G
• For any x, if A x, there must exists a

group of x vertices such that no edges
are between them

• By union bound, we have
Pr(A x) C(n,x) (1-p)x(x-1)/2

Proof (3)
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When x is slightly large, say d(3 ln n) /pe,

Pr(A x) C(n,x) (1-p)x(x-1)/2

nx (1-p)x(x-1)/2

nx e-px(x-1)/2 = (n e-p(x-1)/2)x

 (n e-px/2.5)x for large enough n

(n–0.2)x = o(1)

Proof (4)
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Then, for large enough n,

we have Pr(Y n/2) 0.1

and Pr(A d(3 ln n) /pe) 0.1

This implies that, for large enough n

Pr( (Y n/2) \ (A d(3 ln n) /pe) )

0.8 0 …(why?)

Proof (5)
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That is, for large enough n,
we can select a graph G with less than
n/2 cycles of “short”lengths, and
whose largest independent set is at most
3 ln n / p

 After removing one vertex from each
“short”cycle in this graph G, # vertices
in the resulting graph (after Step 3) n/2

(What happens to the largest independent set?)

Proof (6)
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Let G* = resulting graph after Step 3
Let A(G*) = size of largest indep set of G*
Obviously, A(G*) A(G) 3 ln n / p …(why?)

Also, A(G*) |G*|/(G*) …(why?)

Combining, we get
(G*) |G*|/A(G*) (n/2) / (3 ln n/p)

= n1/k/(6ln n) c for large enough n

 G* exists with girth k, and (G*) c

Proof (7)


