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CS5314
Randomized Algorithms

Lecture 14: Balls, Bins, Random Graphs
(Poisson Approximation)
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•Poisson Approximation for Balls-and-Bins :
to approximate # balls in each bin as
independent Possion RV with = m/n

•Revisit Coupon Collector

Objectives
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• Suppose we throw m balls into n bins
independently and uniformly at random

• From previous lecture, we observe that:

# balls in a particular bin
Poisson RV with = m/n

• How about distribution of balls in all n
bins ?

Poisson Approximation
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Question: Will distribution of n balls be the
same as n independent Poisson RVs with
mean m/n?

Ans. No !
For instance, total # of balls is always
exactly m, but sum of n independent
Poisson RVs can be any value

The difference is because of dependency !

Poisson Approximation
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• Though
“n independent Poisson RVs”

do not have the same distribution as
“m balls into n bins”

we can show that they are related, so
that we can use the “Poisson Case”to
approximate the “Exact Case”

Hopefully, the approximation will be useful …

Poisson Approximation
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Formally, we define

X1
(m), X2

(m), …, Xn
(m)

where Xj
(m) = # balls in Bin j (in Exact Case)

Y1
(m), Y2

(m), …, Yn
(m)

which are n independent Poisson RVs with
parameter m/n (in Poisson Case)

Poisson Approximation
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When Two Distributions Meet

Theorem: Suppose j=1 to n Yj
(m) = k. Under

this condition, the distribution of
(Y1

(m), Y2
(m), …, Yn

(m))
is exactly the same as the distribution of

(X1
(k), X2

(k), …, Xn
(k))

regardless of the value of m or k

How to prove? Throwing k
balls in total
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• Let k1, k2, …, kn be non-negative integers
whose sum is k

• When throwing k balls into n bins,

Pr( (X1
(k),…, Xn

(k)) = (k1,…,kn) )

Proof

=
k1! k2!  kn! nk

k !
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Next,

Pr((Y1
(m), …, Yn

(m)) = (k1, …,kn) | jYj
(m) = k )

Pr((Y1
(m) = k1) \  \ (Yn

(m) = kn))

Pr(j Yj
(m) = k)

Question: What is this probability??

Proof

= …(why?)
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First,
Pr(Yj

(m) = kj) = e-m/n(m/n)kj / kj!

Since Y1
(m), …, Yn

(m) are independent, so

Pr((Y1
(m) = k1) \ \ (Yn

(m) = kn))

= j e-m/n(m/n)kj / kj!
e-m mk

k1! k2!  kn! nk

Proof

=
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On the other hand,

Pr(jYj
(m) = k) = e-m mk / k! …[why??]

So combining the previous results,

Pr((Y1
(m), …, Yn

(m)) = (k1, …,kn) | jYj
(m) = k )

= Pr((X1
(k),…, Xn

(k)) = (k1,…, kn))

 this completes the proof

Proof
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A Stronger Result

• With the previous result between
exact case and Poisson case, we can
show a stronger result …

• Before we proceed, let us obtain a
useful upper bound for n !
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Upper Bound for n!
Lemma: n! en1/2 (n/e)n

Proof: Since ln x is a concave function,

ln x dx  ( ln (j-1) + ln j ) / 2 …(why?)

 ln x dx  ln (n!) - (ln n)/2 …(why?)

 n ln n –n + 1 ln (n!) - (ln n)/2
 Lemma follows by exponentiation

j-1

j

1

n



14

Expectation of Loads

Theorem:
Let f(x1, …, xn) be a non-negative function.
Then,
E[f(X1

(m), …, Xn
(m))] e m E[f(Y1

(m), …, Yn
(m))]

How to prove?

• We now show a relationship between
the expectation of any non-negative
function of the loads in the two cases :
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E[f(Y1
(m), …, Yn

(m))]

= k E[f(Y1
(m), …, Yn

(m)) | j Yj
(m)=k] Pr(j Yj

(m)=k)

E[f(Y1
(m), …, Yn

(m)) | jYj
(m)=m] Pr(jYj

(m)=m)

= E[f(X1
(m), …, Xn

(m))] Pr(jYj
(m)=m) …(why?)

Proof
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Next, using upper bound of m! ,

Pr(jYj
(m)=m) = e-m mm/m! …(why?)

1 / (em1/2 )

Thus,
E[f(Y1

(m), …, Yn
(m))]

E[f(X1
(m), …, Xn

(m))] / (em1/2)

 This completes the proof

Proof
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• The previous theorem holds for any non-
negative function f

• E.g., if f = MAX, then we can relate the
expected maximum load in the two cases

• E.g., if f = an indicator for an event Z,
then the theorem gives the relationship
of Pr(Z occurs) in the two cases

This latter gives the following corollary:

Remark
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Bounding Exact Case

Corollary: Referring to the scenario of
throwing m balls into n bins.
Any event Z that takes place with
probability p in the Poisson case implies:
Z takes place with probability at most
em1/2p in the exact case

How to prove?
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Bounding Exact Case

Proof: Let f be the indicator for event Z
Then,

Pr(Z occurs in exact case)
= E[f(X1

(m), …, Xn
(m))]

em1/2 E[f(Y1
(m), …, Yn

(m))]
= em1/2 Pr(Z occurs in Poisson case)
= em1/2p
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An Even Stronger Result

Theorem: Let f(x1, …, xn) be a non-negative
function such that E[f(X1

(m), …, Xn
(m))] is

monotonically increasing in m.
Then,

E[f(X1
(m), …, Xn

(m))] 2 E[f(Y1
(m), …, Yn

(m))]

How to prove? (Ex. 5.13, 5.14)

If we know more about f, we can obtain an
even stronger bound:
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Bounding Exact Case (2)

Corollary:
Let Z be an event whose probability is
monotonically increasing in # balls.

If Z has probability p in the Poisson case,
 Z has probability at most 2p in the
exact case
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• Some time ago, we have shown that for
sufficiently large n, if we throw n balls
into n bins, then w.h.p. :

Maximum load 3 ln n / ln ln n

• The proof is simply based on counting
and union bound

• Let’s see how the latest result can help
in giving a lower bound…

Maximum Load (Revisited)
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Maximum Load (Revisited)

Lemma:
Suppose n balls are thrown to n bins,
independently and uniformly at random.
Then w.h.p. (at least 1-1/n) :

Maximum load  ln n / ln ln n

How to prove?
Let’s bound the probability for the Poisson

case, and then…
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Let M = ln n / ln ln n
In the Poisson case,

Pr(# of balls in Bin 1 M)
Pr(# of balls in Bin 1 = M)
= e-1(1)M / M! = 1/(eM!)

 In the Poisson case,
Pr(Max-Load M) (1 - 1/(eM!))n

exp{ -n/(eM!) }

Proof



25

Next, we simplify the bound by showing:
- n / (eM!)  - c ln n for some c

Recall that
M! eM1/2 (M/e)M

M (M/e)M [for large n]

 ln M!  ln M + M ln M –M
 ln ln n + ln n –M
 ln n –ln ln n –ln (2e) [for large n]

Proof
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Thus,
M! n / (2e ln n) [for large n]

 exp{ - n / (eM!) } exp{ -2ln n } = 1/n2

So, in the Poisson case
Pr(Max-Load M) 1/n2

 In the Exact case
Pr(Max-Load M) en1/2(1/n2)  1/n

Proof
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• Previously we have shown that if we want
to collect a set of n coupons, the
expected number of coupons we buy is

n H(n) n ln n

• Suppose we have bought n ln n + cn
coupons already. What is the probability
that we have obtained a full collection ?

Coupon Collector (Revisited)
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• After buying n ln n + cn coupons:

Pr(not having ith coupon)
= (1 - 1/n)n ln n + cn

e –(1/n)(n ln n + cn) = e–c / n

• After buying n ln n + cn coupons:
Pr(not having a full collection) e–c

 Pr(having a full collection)  1 - e–c

Coupon Collector (Revisited)
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• Recently, we have seen that Chernoff
bound usually gives a much tighter result

Question:
Can we apply Chernoff bound to get an
even better result ?

Coupon Collector (Revisited)
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Coupon Collector (Revisited)

Theorem: Let X be the number of coupons
we buy before getting one card of each n
types of coupons. Then, for any c,

limn1 Pr(X n ln n + cn ) = 1 - e-e-c

Remark: When c = -4, 1 - e-e-c 1

When c = 4, 1 - e-e-c 0.02
For large n, #coupons is between n ln n 4n is ~ 98% !!!
This is an example of sharp threshold, where the random

variable’s distribution is concentrated around its mean



31

• We can consider the coupon collector’s
problem as a balls-and-bins problem
(What are the balls? How many bins?)

• We shall use Poisson approximation so
that intermediate steps will be easier

• Suppose # balls in each bin is a Poisson
RV with mean ln n + c, so that the
expected total # balls is m = n ln n + cn

Proof
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Then, in the Poisson case,
Pr(Bin 1 is empty) = e-(ln n + c)= e-c/n

Let NE be the event that no bin is empty
in Poisson case

So, Pr(NE) = (1- e-c/n)n

= e-e-c
…[when n1]

Proof
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Let Y be # balls thrown in the Poisson case
Let r = 2m ln m

We claim that as n 1,

1. Pr(|Y-m| r) = 0 (i.e., Y is very close to mean)

2. Pr(NE | |Y-m| r) = Pr(NE | Y=m)
In case Y is very close to mean, we can just assume
Y = m when computing Pr(NE)

Suppose our claim is true …

Two Facts
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As n 1,

e-e-c = Pr(NE)
= Pr(NE | |Y-m| r) Pr(|Y-m| r) +

Pr(NE | |Y-m| r) Pr(|Y-m| r)

= Pr(NE | |Y-m| r) 0 + Pr(NE | Y=m) 1

= Pr(NE | Y=m)
= Pr(no bin is empty in Exact Case

when m balls are thrown)

Consequence of Two Facts
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 Pr(some bin is still empty in Exact Case
when m balls are thrown)

= 1 - e-e-c

Recall: X = # balls thrown in the exact case
until every bin is non-empty

So X m occurs if and only if some bin is
still empty when m balls are thrown

Thus,
Pr(X m) = 1 - e-e-c

Consequence of Two Facts
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Recall:
n = number of bins
Y = # balls thrown in Poisson case
m = n ln n + cn = E[Y]
r = (2m ln m)1/2

Fact 1: In the Poisson case, as n 1,

Pr(|Y-m| r) = 0

Fact 1: Y is very close to mean
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First, Y is a Poisson RV with mean m
To obtain the bound for

Pr(|Y-m| r),

recall the Chernoff bounds: (Lecture 13, page 21)

(1) If x , Pr(Y x) e(e)x /xx

(2) If x , Pr(Y x) e(e)x /xx

Proof of Fact 1
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So, Pr(|Y-m| r) = Pr(Y m+r) + Pr(Y m-r)

For the first term,
Pr(Y m+r) em (em)m+r / (m+r)m+r

= er (m)m+r / (m+r)m+r

= exp{ r - (m+r) ln ((m+r)/m) }
= exp{ r - (m+r) ln (1+ (r/m)) }

Next, we use the inequality that (for |z| < 1)

ln (1+z) z –z2/2

Proof of Fact 1
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So, (with r = (2m ln m)1/2 )
Pr(Y m+r)
exp{ r - (m+r)((r/m)-(r2/(2m2))) }

= exp{ r - (m+r)((r/m)-(ln m/m)) }

= exp{ r - (r-ln m) - ((r2/m)-(r ln m/m)) }

= exp{ ln m - (2 ln m - (r ln m/m)) }

= exp{ - ln m + o(ln m) }
= 0 …as n  1, so that m  1

Proof of Fact 1
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On the other hand, (with r = (2m ln m)1/2 )
Pr(Y m-r) em (em)m-r / (m-r)m-r

= e-r (m)m-r / (m-r)m-r

= exp{ - r - (m-r) ln ((m-r)/m) }
exp{ -r - (m-r)((-r/m) - (r2/2m2)) }

= exp{ - r + r - r2/(2m) - (r ln m/m)}

= exp{ - ln m –o(ln m)}
= 0 …as n  1, so that m  1

Proof of Fact 1
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Thus, in the Poisson case,

0 Pr(|Y-m| r)
= Pr(Y m+r) + Pr(Y m-r)
0 + 0 …as n  1, so that m  1

= 0

 Pr(|Y-m| r) = 0 …as n 1, so that m  1

Proof of Fact 1
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Recall:
n = number of bins
Y = # balls thrown in the Poisson case
m = n ln n + cn = E[Y]
r = (2m ln m)1/2

NE = the event that no bin is empty

Fact 2: In Poisson case, as n 1,

Pr(NE | |Y-m| r) = Pr(NE | Y=m)

Fact 2



43

Firstly, we observe that
Pr(NE | Y=k) is increasing in k … (why?)

 Pr(NE \ Y=k) / Pr(Y=k)

Pr(NE | Y=k+1) Pr(NE | Y=k+2) …
In other words,

Pr(NE \ Y=k) Pr(Y=k) Pr(NE | Y=k+1)

Pr(Y=k) Pr(NE | Y=k+2) …

Proof of Fact 2
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So, Pr(NE | |Y-m| r)

=k=m-r Pr(NE \ Y=k) /k=m-r Pr(Y=k)

k=m-r Pr(Y=k) Pr(NE | Y=m+r)

k=m-r Pr(Y=k)
= Pr(NE | Y=m+r)

Similarly, Pr(NE |Y=m-r) Pr(NE | |Y-m|r)

Proof of Fact 2

m+r

m+r

m+r

m+r
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Next, we want to upper bound this term:

| Pr(NE | |Y-m| r) - Pr(NE | Y=m) |
Hopefully, we can show this to be 0

However, we don’t know if Pr(NE | Y=m) is
larger, or Pr(NE | |Y-m| r) is larger…

Let’s get a bound that works for both cases

Proof of Fact 2
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Case 1: Suppose Pr(NE | Y=m) is larger

Then, we know that

| Pr(NE | |Y-m| r) - Pr(NE | Y=m) |
= Pr(NE | Y=m) - Pr(NE | |Y-m| r)

Pr(NE | Y=m) - Pr(NE | Y=m-r)

Pr(NE | Y=m+r) - Pr(NE | Y=m-r)

Proof of Fact 2
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Case 2: Suppose Pr(NE | Y=m) is smaller

Then, we know that

| Pr(NE | |Y-m| r) - Pr(NE | Y=m) |
= Pr(NE | |Y-m| r) - Pr(NE | Y=m)

Pr(NE | Y=m+r) - Pr(NE | Y=m)

Pr(NE | Y=m+r) - Pr(NE | Y=m-r)

Proof of Fact 2



48

Conclusion:
It is always true that:

| Pr(NE | |Y-m| r) - Pr(NE | Y=m) |
Pr(NE | Y=m+r) - Pr(NE | Y=m-r)

Question: What is the physical meaning of
Pr(NE | Y=m+r) - Pr(NE | Y=m-r)?

Proof of Fact 2
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By Theorem on Page 7, it is the difference
of the probability, in the exact case,
that all bins have at least one balls when
m+r balls and when m-r balls are thrown …

Also equals to Pr(success) in the following:

Step 1. Throw m-r balls
Step 2. If all bins non-empty, failure
Step 3. Else, throw 2r more balls
Step 4. If all bins non-empty, success.

Else, failure

Proof of Fact 2

Will Pr(success) be
large? Or small?
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Then, (with m = n ln n + cn, r = (2m ln m)1/2 )
Pr(success)
= Pr(some bins empty after m-r balls and

all bins nonempty after 2r extra balls)
Pr(some bins empty after m-r balls and

a specific empty bin becomes nonempty
after 2r extra balls)

Pr(a specific empty bin becomes nonempty
after 2r extra balls)

2r/n [union bound] = 0 as n  1

Proof of Fact 2
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Thus,

0 | Pr(NE | |Y-m| r) - Pr(NE | Y=m) |
Pr(NE | Y=m+r) - Pr(NE | Y=m-r)
= Pr(success) 0 …as n  1

 As n  1,

|Pr(NE | |Y-m| r) - Pr(NE | Y=m)| = 0

or, Pr(NE | |Y-m| r) = Pr(NE | Y=m)

Proof of Fact 2


