CS5314
 Randomized Algorithms

Lecture 14: Balls, Bins, Random Graphs
(Poisson Approximation)

Objectives

- Poisson Approximation for Balls-and-Bins: to approximate \# balls in each bin as independent Possion RV with $\mu=m / n$
- Revisit Coupon Collector

Poisson Approximation

- Suppose we throw m balls into n bins independently and uniformly at random
- From previous lecture, we observe that:
\# balls in a particular bin
~ Poisson RV with $\mu=\mathrm{m} / \mathrm{n}$
- How about distribution of balls in all n bins?

Poisson Approximation

Question: Will distribution of n balls be the same as n independent Poisson RVs with mean m / n ?

Ans. No!
For instance, total \# of balls is always exactly m, but sum of n independent Poisson RVs can be any value

The difference is because of dependency!

Poisson Approximation

- Though " n independent Poisson RVs" do not have the same distribution as " m balls into n bins"
we can show that they are related, so that we can use the "Poisson Case" to approximate the "Exact Case"

Hopefully, the approximation will be useful ...

Poisson Approximation

Formally, we define

$$
X_{1}^{(m)}, X_{2}^{(m)}, \ldots, X_{n}^{(m)}
$$

where $X_{j}{ }^{(m)}=\#$ balls in Bin j (in Exact Case)

$$
\mathrm{Y}_{1}(m), \mathrm{Y}_{2}^{(m)}, \ldots, \mathrm{Y}_{n}^{(m)}
$$

which are n independent Poisson RVs with parameter m / n (in Poisson Case)

When Two Distributions Meet

Theorem: Suppose $\sum_{j=1 \text { ton }} \mathrm{Y}_{\mathrm{j}}^{(m)}=\mathrm{k}$. Under this condition, the distribution of

$$
\left(Y_{1}(m), Y_{2}^{(m)}, \ldots, Y_{n}^{(m)}\right)
$$

is exactly the same as the distribution of

regardless of the value of m or k

How to prove?
Throwing k balls in total

Proof

- Let $k_{1}, k_{2}, \ldots, k_{n}$ be non-negative integers whose sum is k
- When throwing k balls into n bins,

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(X_{1}(k), \ldots, X_{n}^{(k)}\right)=\left(k_{1}, \ldots, k_{n}\right)\right) \\
= & \frac{k!}{k_{1}!k_{2}!\cdots k_{n}!n^{k}}
\end{aligned}
$$

Proof

Next,

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)=\left(k_{1}, \ldots, k_{n}\right) \mid \sum_{j} y_{j}^{(m)}=k\right) \\
= & \frac{\operatorname{Pr}\left(\left(Y_{1}(m)=k_{1}\right) \cap \cdots \cap\left(Y_{n}^{(m)}=k_{n}\right)\right)}{\operatorname{Pr}\left(\sum_{j} Y_{j}^{(m)}=k\right)} \ldots(\text { why? })
\end{aligned}
$$

Question: What is this probability??

Proof

First,

$$
\operatorname{Pr}\left(Y_{j}^{(m)}=k_{j}\right)=e^{-m / n}(m / n)^{k_{j}} / k_{j}!
$$

Since $Y_{1}(m), \ldots, Y_{n}{ }^{(m)}$ are independent, so

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(Y_{1}(m)=k_{1}\right) \cap \cdots \cap\left(Y_{n}^{(m)}=k_{n}\right)\right) \\
& =\Pi_{j} e^{-m / n}(m / n)^{k_{j}} / k_{j}! \\
& =\frac{e^{-m} m^{k}}{k_{1}!k_{2}!\cdots k_{n}!n^{k}}
\end{aligned}
$$

Proof

On the other hand,

$$
\operatorname{Pr}\left(\sum_{j} y_{j}(m)=k\right)=e^{-m} m^{k} / k!\quad \ldots[w h y ? ?]
$$

So combining the previous results,

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(Y_{1}(m), \ldots, Y_{n}^{(m)}\right)=\left(k_{1}, \ldots, k_{n}\right) \mid \sum_{j} y_{j}^{(m)}=k\right) \\
= & \operatorname{Pr}\left(\left(X_{1}^{(k)}, \ldots, X_{n}^{(k)}\right)=\left(k_{1}, \ldots, k_{n}\right)\right)
\end{aligned}
$$

\rightarrow this completes the proof

A Stronger Result

- With the previous result between exact case and Poisson case, we can show a stronger result ...
- Before we proceed, let us obtain a useful upper bound for n !

Upper Bound for n !

Lemma: $n!\leq e n^{1 / 2}(n / e)^{n}$

Proof: Since $\ln x$ is a concave function,

$$
\int_{j-1}^{j} \ln x d x \geq(\ln (j-1)+\ln j) / 2
$$

... (why?)
$\rightarrow \int_{1}^{n} \ln x d x \geq \ln (n!)-(\ln n) / 2 \ldots$ (why?)
$\rightarrow n \ln n-n+1 \geq \ln (n!)-(\ln n) / 2$
\rightarrow Lemma follows by exponentiation

Expectation of Loads

- We now show a relationship between the expectation of any non-negative function of the loads in the two cases:

Theorem:
Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a non-negative function.
Then,

$$
E\left[f\left(X_{1}^{(m)}, \ldots, X_{n}^{(m)}\right)\right] \leq e \sqrt{m} E\left[f\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)\right]
$$

How to prove?

Proof

$$
\begin{aligned}
& E\left[f\left(y_{1}^{(m)}, \ldots, y_{n}^{(m)}\right)\right] \\
& =\sum_{k} E\left[f\left(Y_{1}^{(m)}, \ldots, y_{n}^{(m)}\right) \mid \Sigma_{j} y_{j}(m)=k\right] \operatorname{Pr}\left(\Sigma_{j} y_{j}(m)=k\right) \\
& \geq E\left[f\left(Y_{1}(m), \ldots, y_{n}^{(m)}\right) \mid \Sigma_{j} y_{j}^{(m)}=m\right] \operatorname{Pr}\left(\Sigma_{j} y_{j}^{(m)}=m\right) \\
& =E\left[f\left(X_{1}^{(m)}, \ldots, X_{n}^{(m)}\right)\right] \operatorname{Pr}\left(\Sigma_{j} y_{j}^{(m)}=m\right) \quad \ldots(w h y ?)
\end{aligned}
$$

Proof

Next, using upper bound of $m!$,

$$
\begin{align*}
& \operatorname{Pr}\left(\sum_{j} y_{j}(m)=m\right)=e^{-m} m^{m} / m! \tag{why?}\\
\geq & 1 /\left(\mathrm{em}^{1 / 2}\right)
\end{align*}
$$

Thus,

$$
\begin{aligned}
& E\left[f\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)\right] \\
\geq & E\left[f\left(X_{1}^{(m)}, \ldots, X_{n}^{(m)}\right)\right] /\left(\mathrm{em}^{1 / 2}\right)
\end{aligned}
$$

\rightarrow This completes the proof

Remark

- The previous theorem holds for any nonnegative function f
- E.g., if $f=M A X$, then we can relate the expected maximum load in the two cases
- E.g., if $f=$ an indicator for an event Z, then the theorem gives the relationship of $\operatorname{Pr}(Z$ occurs $)$ in the two cases

This latter gives the following corollary:

Bounding Exact Case

Corollary: Referring to the scenario of throwing m balls into n bins.
Any event Z that takes place with probability p in the Poisson case implies:
Z takes place with probability at most em ${ }^{1 / 2} p$ in the exact case

How to prove?

Bounding Exact Case

Proof: Let f be the indicator for event Z
Then,

```
Pr(Z occurs in exact case)
= E[f( }\mp@subsup{X}{1}{(m)},\ldots,\mp@subsup{X}{n}{(m)})
em}\mp@subsup{m}{}{1/2}E[f(\mp@subsup{Y}{1}{(m)},\ldots,\mp@subsup{Y}{n}{(m)})
= em}\mp@subsup{}{}{1/2}\operatorname{Pr}(Z\mathrm{ occurs in Poisson case)
= em}\mp@subsup{m}{}{1/2}
```


An Even Stronger Result \dagger

If we know more about f, we can obtain an even stronger bound:

Theorem: Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a non-negative function such that $E\left[f\left(X_{1}(m), \ldots, X_{n}^{(m)}\right)\right]$ is monotonically increasing in m.
Then,

$$
E\left[f\left(X_{1}^{(m)}, \ldots, X_{n}^{(m)}\right)\right] \leq 2 E\left[f\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)\right]
$$

How to prove? (Ex. 5.13, 5.14)

Bounding Exact Case (2)

Corollary:

Let Z be an event whose probability is monotonically increasing in \# balls.

If Z has probability p in the Poisson case,
$\rightarrow Z$ has probability at most $2 p$ in the exact case

Maximum Load (Revisited)

- Some time ago, we have shown that for sufficiently large n, if we throw n balls into n bins, then w.h.p. :
Maximum load $\leq 3 \ln n / \ln \ln n$
- The proof is simply based on counting and union bound
- Let's see how the latest result can help in giving a lower bound...

Maximum Load (Revisited)

Lemma:
Suppose n balls are thrown to n bins, independently and uniformly at random.
Then w.h.p. (at least 1-1/n) :

Maximum load $\geq \ln n / \ln \ln n$

How to prove?
Let's bound the probability for the Poisson case, and then...

Proof

Let $M=\ln n / \ln \ln n$

In the Poisson case,
$\operatorname{Pr}(\#$ of balls in $\operatorname{Bin} 1 \geq M)$
$\geq \operatorname{Pr}(\#$ of balls in $\operatorname{Bin} 1=M)$
$=e^{-1}(1)^{M} / M!=1 /(e M!)$
\rightarrow In the Poisson case,

$$
\begin{aligned}
& \operatorname{Pr}(\operatorname{Max}-\operatorname{Load}<M) \leq(1-1 /(e M!))^{n} \\
& \leq \exp \{-n /(e M!)\}
\end{aligned}
$$

Proof

Next, we simplify the bound by showing:
$-n /(e M!) \leq-c \ln n$ for some c
Recall that

$$
\begin{aligned}
M! & \leq e M^{1 / 2}(M / e)^{M} \\
& \leq M(M / e)^{M}
\end{aligned}
$$

[for large n]
$\rightarrow \ln M!\leq \ln M+M \ln M-M$
$\leq \ln \ln n+\ln n-M$
$\leq \ln n-\ln \ln n-\ln (2 e) \quad$ [for largen]

Proof

Thus,

$$
\begin{aligned}
& M!\leq n /(2 e \ln n) \quad[\text { for large } n] \\
& \Rightarrow \quad \exp \{-n /(e M!)\} \leq \exp \{-2 \ln n\}=1 / n^{2}
\end{aligned}
$$

So, in the Poisson case

$$
\operatorname{Pr}(\text { Max-Load }<M) \leq 1 / n^{2}
$$

\rightarrow In the Exact case $\operatorname{Pr}($ Max-Load $<M) \leq \operatorname{en}^{1 / 2}\left(1 / n^{2}\right) \leq 1 / n$

Coupon Collector (Revisited)

- Previously we have shown that if we want to collect a set of n coupons, the expected number of coupons we buy is

$$
n H(n) \approx n \ln n
$$

- Suppose we have bought $n \ln n+c n$ coupons already. What is the probability that we have obtained a full collection?

Coupon Collector (Revisited)

- After buying $n \ln n+c n$ coupons:
$\operatorname{Pr}\left(\right.$ not having $i^{\text {th }}$ coupon)
$=(1-1 / n)^{n \ln n+c n}$
$\leq e^{-(1 / n)(n \ln n+c n)}=e^{-c} / n$
- After buying $n \ln n+c n$ coupons: $\operatorname{Pr}\left(\right.$ not having a full collection) $\leq e^{-c}$
$\rightarrow \operatorname{Pr}($ having a full collection $) \geq 1-e^{-c}$

Coupon Collector (Revisited)

- Recently, we have seen that Chernoff bound usually gives a much tighter result

Question:
Can we apply Chernoff bound to get an even better result?

Coupon Collector (Revisited)

Theorem: Let X be the number of coupons we buy before getting one card of each n types of coupons. Then, for any c,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(X>n \ln n+c n)=1-e^{-e^{-c}}
$$

Remark: When $c=-4,1-e^{-e^{-c}} \approx 1$

$$
\text { When } c=4,1-e^{-e^{-c}} \approx 0.02
$$

\rightarrow For large n, \#coupons is between $n \ln n \pm 4 n$ is $\sim 98 \%!!!$
\rightarrow This is an example of sharp threshold, where the random variable's distribution is concentrated around its mean

Proof

- We can consider the coupon collector's problem as a balls-and-bins problem (What are the balls? How many bins?)
- We shall use Poisson approximation so that intermediate steps will be easier
- Suppose \# balls in each bin is a Poisson RV with mean In $n+c$, so that the expected total \# balls is $m=n \ln n+c n$

Proof

Then, in the Poisson case, $\operatorname{Pr}(\operatorname{Bin} 1$ is empty $)=e^{-(\ln n+c)}=e^{-c} / n$

Let NE be the event that no bin is empty in Poisson case

So, $\operatorname{Pr}(N E)=\left(1-e^{-c} / n\right)^{n}$

$$
=e^{-e^{-c}}
$$

... [when $n \rightarrow \infty$]

Two Facts

Let Y be \# balls thrown in the Poisson case Let $r=\sqrt{2 m \ln m}$

We claim that as $n \rightarrow \infty$,

1. $\operatorname{Pr}(|Y-m|>r)=0$ (i.e., y is very close to mean)
2. $\operatorname{Pr}(N E||Y-m| \leq r)=\operatorname{Pr}(N E \mid Y=m)$

In case Y is very close to mean, we can just assume $y=m$ when computing $\operatorname{Pr}(N E)$

Suppose our claim is true ...

Consequence of Two Facts

$$
\begin{aligned}
& \text { As } n \rightarrow \infty, \\
& \begin{aligned}
e^{-e^{-c}=}= & \operatorname{Pr}(N E) \\
= & \operatorname{Pr}(N E||Y-m|>r) \operatorname{Pr}(|Y-m|>r)+ \\
& \operatorname{Pr}(N E||Y-m| \leq r) \operatorname{Pr}(|Y-m| \leq r) \\
= & \operatorname{Pr}(N E||Y-m|>r) 0+\operatorname{Pr}(N E \mid Y=m) 1 \\
= & \operatorname{Pr}(N E \mid Y=m) \\
= & \operatorname{Pr}(n o \text { bin is empty in Exact Case } \\
& \text { when } m \text { balls are thrown })
\end{aligned}
\end{aligned}
$$

Consequence of Two Facts

$\rightarrow \operatorname{Pr}$ (some bin is still empty in Exact Case when m balls are thrown)

$$
=1-e^{-e^{-c}}
$$

Recall: $X=\#$ balls thrown in the exact case until every bin is non-empty
So $X>m$ occurs if and only if some bin is still empty when m balls are thrown
Thus,

$$
\operatorname{Pr}(X>m)=1-e^{-e^{-c}}
$$

Fact 1: Y is very close to mean

Recall:
$n=$ number of bins
$y=\#$ balls thrown in Poisson case
$m=n \ln n+c n=E[Y]$
$r=(2 m \ln m)^{1 / 2}$
Fact 1: In the Poisson case, as $n \rightarrow \infty$,

$$
\operatorname{Pr}(|Y-m|>r)=0
$$

Proof of Fact 1

First, Y is a Poisson RV with mean m To obtain the bound for

$$
\operatorname{Pr}(|Y-m|>r),
$$

recall the Chernoff bounds: (Lecture 13, page 21)
(1) If $x>\mu, \quad \operatorname{Pr}(y \geq x) \leq e^{-\mu}(e \mu)^{x} / x^{x}$
(2) If $x<\mu, \quad \operatorname{Pr}(Y \leq x) \leq e^{-\mu}(e \mu)^{x} / x^{x}$

Proof of Fact 1
So, $\operatorname{Pr}(|Y-m|>r)=\operatorname{Pr}(Y>m+r)+\operatorname{Pr}(Y<m-r)$
For the first term,

$$
\begin{aligned}
& \operatorname{Pr}(Y>m+r) \leq e^{-m}(e m)^{m+r} /(m+r)^{m+r} \\
& =e^{r}(m)^{m+r} /(m+r)^{m+r} \\
& =\exp \{r-(m+r) \ln ((m+r) / m)\} \\
& =\exp \{r-(m+r) \ln (1+(r / m))\}
\end{aligned}
$$

Next, we use the inequality that (for $|z|<1$)

$$
\ln (1+z) \geq z-z^{2} / 2
$$

Proof of Fact 1
So, (with $\left.r=(2 m \ln m)^{1 / 2}\right)$

$$
\begin{aligned}
& \operatorname{Pr}(Y>m+r) \\
& \leq \exp \left\{r-(m+r)\left((r / m)-\left(r^{2} /\left(2 m^{2}\right)\right)\right)\right\} \\
& =\exp \{r-(m+r)((r / m)-(\ln m / m))\} \\
& =\exp \left\{r-(r-\ln m)-\left(\left(r^{2} / m\right)-(r \ln m / m)\right)\right\} \\
& =\exp \{\ln m-(2 \ln m-(r \ln m / m))\} \\
& =\exp \{-\ln m+o(\ln m)\} \\
& =0 \quad . . . \text { as } n \rightarrow \infty, \text { so that } m \rightarrow \infty
\end{aligned}
$$

Proof of Fact 1

On the other hand, $\left(\right.$ with $\left.r=(2 m \ln m)^{1 / 2}\right)$

$$
\begin{aligned}
& \operatorname{Pr}(Y<m-r) \leq e^{-m}(e m)^{m-r} /(m-r)^{m-r} \\
& =e^{-r}(m)^{m-r} /(m-r)^{m-r} \\
& =\exp \{-r-(m-r) \ln ((m-r) / m)\} \\
& \leq \exp \left\{-r-(m-r)\left((-r / m)-\left(r^{2} / 2 m^{2}\right)\right)\right\} \\
& =\exp \left\{-r+r-r^{2} /(2 m)-(r \ln m / m)\right\} \\
& =\exp \{-\ln m-o(\ln m)\} \\
& =0 \quad \quad . . \text { as } n \rightarrow \infty, \text { so that } m \rightarrow \infty
\end{aligned}
$$

Proof of Fact 1
Thus, in the Poisson case,

$$
\begin{aligned}
& 0 \leq \operatorname{Pr}(|Y-m|>r) \\
& =\operatorname{Pr}(Y>m+r)+\operatorname{Pr}(Y<m-r) \\
& \leq 0+0 \quad \quad \ldots \text { as } n \rightarrow \infty, \text { so that } m \rightarrow \infty \\
& =0
\end{aligned}
$$

$\Rightarrow \operatorname{Pr}(|Y-m|>r)=0 \ldots$ as $n \rightarrow \infty$, so that $m \rightarrow \infty$

Fact 2

Recall:

$$
\begin{aligned}
& n=\text { number of bins } \\
& y=\# \text { balls thrown in the Poisson case } \\
& m=n \ln n+c n=E[Y] \\
& r=(2 m \ln m)^{1 / 2} \\
& N E=\text { the event that no bin is empty }
\end{aligned}
$$

Fact 2: In Poisson case, as $n \rightarrow \infty$,

$$
\operatorname{Pr}(N E||Y-m| \leq r)=\operatorname{Pr}(N E \mid Y=m)
$$

Proof of Fact 2

Firstly, we observe that $\operatorname{Pr}(N E \mid Y=k)$ is increasing in $k \quad . .$. (why?)
$\rightarrow \operatorname{Pr}(N E \cap Y=k) / \operatorname{Pr}(Y=k)$

$$
\leq \operatorname{Pr}(N E \mid Y=k+1) \leq \operatorname{Pr}(N E \mid Y=k+2) \leq \ldots
$$

In other words,

$$
\begin{aligned}
& \operatorname{Pr}(N E \cap Y=k) \leq \operatorname{Pr}(Y=k) \operatorname{Pr}(N E \mid Y=k+1) \\
& \leq \operatorname{Pr}(Y=k) \operatorname{Pr}(N E \mid Y=k+2) \leq \ldots
\end{aligned}
$$

Proof of Fact 2

So, $\operatorname{Pr}(N E||Y-m| \leq r)$

$$
=\sum_{k=m-r}^{m+r} \operatorname{Pr}(N E \cap Y=k) / \sum_{k=m-r}^{m+r} \operatorname{Pr}(Y=k)
$$

$$
\leq \frac{\sum_{k=m-r}^{m+r} \operatorname{Pr}(Y=k) \operatorname{Pr}(N E \mid Y=m+r)}{\sum_{k=m-r}^{m+r} \operatorname{Pr}(Y=k)}
$$

$$
=\operatorname{Pr}(N E \mid Y=m+r)
$$

Similarly, $\operatorname{Pr}(N E \mid Y=m-r) \leq \operatorname{Pr}(N E| | Y-m \mid \leq r)$

Proof of Fact 2

Next, we want to upper bound this term:

$$
\operatorname{Pr}(N E||Y-m| \leq r)-\operatorname{Pr}(N E \mid Y=m) \mid
$$

Hopefully, we can show this to be 0
However, we don't know if $\operatorname{Pr}(N E \mid Y=m)$ is larger, or $\operatorname{Pr}(N E||Y-m| \leq r)$ is larger...

Let's get a bound that works for both cases

Proof of Fact 2

Case 1: Suppose $\operatorname{Pr}(N E \mid Y=m)$ is larger
Then, we know that

$$
\begin{aligned}
& |\operatorname{Pr}(N E||Y-m| \leq r)-\operatorname{Pr}(N E \mid Y=m) \mid \\
& =\operatorname{Pr}(N E \mid Y=m)-\operatorname{Pr}(N E| | Y-m \mid \leq r) \\
& \leq \operatorname{Pr}(N E \mid Y=m)-\operatorname{Pr}(N E \mid Y=m-r) \\
& \leq \operatorname{Pr}(N E \mid Y=m+r)-\operatorname{Pr}(N E \mid Y=m-r)
\end{aligned}
$$

Proof of Fact 2

Case 2: Suppose $\operatorname{Pr}(N E \mid Y=m)$ is smaller
Then, we know that

$$
\begin{aligned}
& |\operatorname{Pr}(N E||Y-m| \leq r)-\operatorname{Pr}(N E \mid Y=m) \mid \\
& =\operatorname{Pr}(N E| | Y-m \mid \leq r)-\operatorname{Pr}(N E \mid Y=m) \\
& \leq \operatorname{Pr}(N E \mid Y=m+r)-\operatorname{Pr}(N E \mid Y=m) \\
& \leq \operatorname{Pr}(N E \mid Y=m+r)-\operatorname{Pr}(N E \mid Y=m-r)
\end{aligned}
$$

Proof of Fact 2

Conclusion:
It is always true that:

$$
\begin{aligned}
& \mid \operatorname{Pr}(N E| | Y-m \mid \leq r)-\operatorname{Pr}(N E \mid Y=m) \\
& \leq \operatorname{Pr}(N E \mid Y=m+r)-\operatorname{Pr}(N E \mid Y=m-r)
\end{aligned}
$$

Question: What is the physical meaning of

$$
\operatorname{Pr}(N E \mid Y=m+r)-\operatorname{Pr}(N E \mid Y=m-r) ?
$$

Proof of Fact 2

By Theorem on Page 7, it is the difference of the probability, in the exact case, that all bins have at least one balls when $m+r$ balls and when $m-r$ balls are thrown ...
Also equals to Pr (success) in the following:
Step 1. Throw m-r balls
Step 2. If all bins non-empty, failure
Step 3. Else, throw $2 r$ more balls
Step 4. If all bins non-empty, success.
Else, failure
Will Pr(success) be large? Or small?

Proof of Fact 2

Then, (with $\left.m=n \ln n+c n, r=(2 m \ln m)^{1 / 2}\right)$
$\operatorname{Pr}($ success $)$
$=\operatorname{Pr}$ (some bins empty after m-r balls and all bins nonempty after $2 r$ extra balls)
$\leq \operatorname{Pr}$ (some bins empty after $m-r$ balls and a specific empty bin becomes nonempty after $2 r$ extra balls)
$\leq \operatorname{Pr}$ (a specific empty bin becomes nonempty after $2 r$ extra balls)
$\leq 2 r / n \quad$ [union bound] $=0$ as $n \rightarrow \infty$

Proof of Fact 2

Thus,

$$
\begin{aligned}
0 & \leq|\operatorname{Pr}(N E| | Y-m \mid \leq r)-\operatorname{Pr}(N E \mid Y=m)| \\
& \leq \operatorname{Pr}(N E \mid Y=m+r)-\operatorname{Pr}(N E \mid Y=m-r) \\
& \operatorname{Pr}(\text { success }) \leq 0 \quad \ldots \text { as } n \rightarrow \infty
\end{aligned}
$$

\rightarrow As $n \rightarrow \infty$,
$|\operatorname{Pr}(N E||Y-m| \leq r)-\operatorname{Pr}(N E \mid Y=m) \mid=0$
or, $\quad \operatorname{Pr}(N E||Y-m| \leq r)=\operatorname{Pr}(N E \mid Y=m)$

