CS5314 Randomized Algorithms

Lecture 1: Events and Probability

Objectives

- Unlike other CS courses, this course is a MATH course...
- We will look at a lot of definitions, theorems and proofs
- This lecture will quickly review basic set theory and introduce formal definition of probability

- A set is a group of items
- One way to describe a set: list every item in the group inside { }
 - E.g., $\{12, 24, 5\}$ is a set with three items
- When the items in the set has trend: use ...
 - E.g., { 1, 2, 3, 4, ... } means the set of natural numbers
- Or, state the rule
 - E.g., { n | n = m² for some positive integer m } means the set { 1, 4, 9, 16, 25, ... }

- A set with no items is an empty set denoted by {} or \emptyset
- The order of describing a set does not matter
 - $\{12, 24, 5\} = \{5, 24, 12\}$
- Repetition of items does not matter too
 { 5, 5, 5, 1 } = { 1, 5 }
- Membership symbol \in

 $-5 \in \{12, 24, 5\}$ $7 \notin \{12, 24, 5\}$

Set (Quick Quiz)

- How many items are in each of the following set?
 - { 3, 4, 5, ..., 10 }
 - $\{ 2, 3, 3, 4, 4, 2, 1 \}$
 - { 2, {2}, {{2}} }
 - Ø
 - **-** {Ø}

Given two sets A and B

- we say A ⊆ B (read as A is a subset of B) if every item in A also appears in B
 - E.g., A = the set of primes, B = the set of integers
- we say $A \subsetneq B$ (read as A is a proper subset of B) if $A \subseteq B$ but $A \neq B$

Warning: Don't be confused with \in and \subseteq

- Let $A = \{1, 2, 3\}$. Is $\emptyset \in A$? Is $\emptyset \subseteq A$?

Union and Intersection

Given two sets A and B

- $A \cup B$ (read as the union of A and B) is the set obtained by combining all elements of A and B in a single set
 - E.g., A = { 1, 2, 4 } B = { 2, 5 } A ∪ B = { 1, 2, 4, 5 }
- A ∩ B (read as the intersection of A and B) is the set of common items of A and B
 In the above example, A ∩ B = { 2 }
- If A ∩ B = { }, then we say A and B are disjoint

 The power set of A is the set of all subsets of A, denoted by 2^A

 $2^{A} = \{ \{\}, \{0\}, \{1\}, \{0,1\} \}$

- How many items in the above power set of A?
- If A has n items, how many items does its power set contain? Why?

Experiment and Sample Space

Experiment : a process producing an outcome

Random experiment : an experiment whose outcome is not known until it is observed

Sample space of a random experiment : the set of all possible outcomes

Event : A subset of the sample space (called a simple event if there is only 1 element) Experiment and Sample Space (2)

- Example 1:
 - Experiment:
 - Throw a die once and observe result
 - Sample Space: { 1, 2, 3, 4, 5, 6 }
- Example 2:
 - Experiment:
 - Throw a coin repeatedly till Head is up Sample Space: ??

Definition of Probability

- Given a random experiment, we can talk about its probability space, which consists of three things:
- (1) The sample space Ω
- (2) The allowable events (any subset of Ω)
- (3) The probability function, Pr, which maps any event to a real number such that ...

Definition of Probability (2)

... it satisfies the following conditions: (i) For any event E, $0 \le Pr(E) \le 1$ (ii) $Pr(\Omega) = 1$ (iii) For any finite or countably infinite sequence of events $E_1, E_2, ...,$ if they are pairwise mutually disjoint, then

 $Pr(E_{1} \cup E_{2} \cup E_{3} \dots)$ = Pr(E_{1}) + Pr(E_{2}) + Pr(E_{3}) + ...

Example

Experiment: Throw a die once and observe result Sample Space: { 1, 2, 3, 4, 5, 6 }

The event {1} corresponds to the case where the observed value is 1. What is meant by the event {1,2} ?

Example (cont)

Questions:

- Suppose the die is a fair die, so that Pr(1)= Pr(2) = ... = Pr(6). What is Pr(1)? Why?
- 2. If Pr(1) = 0.2, Pr(2) = 0.3, Pr(3) = 0.4, Pr(4) = 0.1, Pr(5) = Pr(6) = 0.

Can we obtain $Pr(\{1,2,4\})$?

A simple lemma

Lemma: For any two events E_1 and E_2

 $Pr(E_1 \cup E_2) = Pr(E_1) + Pr(E_2) - Pr(E_1 \cap E_2)$

Proof: Let $A=E_1-(E_1\cap E_2)$ and $B=E_2-(E_1\cap E_2)$. Then, $Pr(E_1 \cup E_2) = Pr(A) + Pr(B) + Pr(E_1 \cap E_2)$, $Pr(E_1) = Pr(A) + Pr(E_1 \cap E_2)$, and $Pr(E_2) = Pr(B) + Pr(E_1 \cap E_2)$,

so the lemma follows.

Union Bound

Lemma: For any finite and countably infinite sequence of events E_1 , E_2 , E_3 , ...

 $Pr(E_1 \cup E_2 \cup E_3 ...) \le Pr(E_1) + Pr(E_2) + Pr(E_3) + ...$

How to prove??