CS5314
 Randomized Algorithms

Lecture 1: Events and Probability

Objectives

- Unlike other CS courses, this course is a MATH course...
- We will look at a lot of definitions, theorems and proofs
- This lecture will quickly review basic set theory and introduce formal definition of probability

Set

- A set is a group of items
- One way to describe a set: list every item in the group inside \{ \}
- E.g., $\{12,24,5\}$ is a set with three items
- When the items in the set has trend: use ...
- E.g., $\{1,2,3,4, \ldots\}$ means the set of natural numbers
- Or, state the rule
- E.g., $\left\{n \mid n=m^{2}\right.$ for some positive integer $\left.m\right\}$ means the set $\{1,4,9,16,25, \ldots\}$

Set

- A set with no items is an empty set denoted by \{\} or \emptyset
- The order of describing a set does not matter
$-\{12,24,5\}=\{5,24,12\}$
- Repetition of items does not matter too
$-\{5,5,5,1\}=\{1,5\}$
- Membership symbol \in
$-5 \in\{12,24,5\} \quad 7 \notin\{12,24,5\}$

Set (Quick Quiz)

- How many items are in each of the following set?

$$
\begin{aligned}
& -\{3,4,5, \ldots, 10\} \\
& -\{2,3,3,4,4,2,1\} \\
& -\{2,\{2\},\{\{2\}\}\} \\
& -\emptyset \\
& -\{\emptyset\}
\end{aligned}
$$

Set

Given two sets A and B

- we say $A \subseteq B$ (read as A is a subset of B) if every item in A also appears in B
- E.g., $A=$ the set of primes, $B=$ the set of integers
- we say $A \subsetneq B$ (read as A is a proper subset of B) if $A \subseteq B$ but $A \neq B$
Warning: Don't be confused with \in and \subseteq
- Let $A=\{1,2,3\}$. Is $\emptyset \in A$? Is $\emptyset \subseteq A$?

Union and Intersection

Given two sets A and B

- $A \cup B$ (read as the union of A and B) is the set obtained by combining all elements of A and B in a single se \dagger
- E.g. $A=\{1,2,4\} \quad B=\{2,5\}$
$A \cup B=\{1,2,4,5\}$
- $A \cap B$ (read as the intersection of A and $B)$ is the set of common items of A and B
- In the above example, $A \cap B=\{2\}$
- If $A \cap B=\{ \}$, then we say A and B are disjoint

Set

- The power set of A is the set of all subsets of A, denoted by 2^{A}
- E.g., $A=\{0,1\}$

$$
2^{A}=\{\{ \},\{0\},\{1\},\{0,1\}\}
$$

- How many items in the above power set of A ?
- If A has n items, how many items does its power set contain? Why?

Experiment and Sample Space

Experiment : a process producing an outcome
Random experiment : an experiment whose outcome is not known until it is observed

Sample space of a random experiment : the set of all possible outcomes

Event : A subset of the sample space
(called a simple event if there is only 1 element)

Experiment and Sample Space (2)

Example 1:
Experiment:
Throw a die once and observe result
Sample Space: $\{1,2,3,4,5,6\}$
Example 2:
Experiment:
Throw a coin repeatedly till Head is up Sample Space: ??

Definition of Probability

Given a random experiment, we can talk about its probability space, which consists of three things:
(1) The sample space Ω
(2) The allowable events (any subset of Ω)
(3) The probability function, Pr , which maps any event to a real number such that ...

Definition of Probability (2)

... it satisfies the following conditions:
(i) For any event $E, 0 \leq \operatorname{Pr}(E) \leq 1$
(ii) $\operatorname{Pr}(\Omega)=1$
(iii) For any finite or countably infinite sequence of events E_{1}, E_{2}, \ldots, if they are pairwise mutually disjoint, then

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{1} \cup E_{2} \cup E_{3} \ldots\right) \\
= & \operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)+\operatorname{Pr}\left(E_{3}\right)+\ldots
\end{aligned}
$$

Example

Experiment:
Throw a die once and observe result Sample Space: $\{1,2,3,4,5,6\}$

The event $\{1\}$ corresponds to the case where the observed value is 1.
What is meant by the event $\{1,2\}$?

Example (cont)

Questions:

1. Suppose the die is a fair die, so that $\operatorname{Pr}(1)=\operatorname{Pr}(2)=\ldots=\operatorname{Pr}(6)$.
What is $\operatorname{Pr}(1)$? Why?

$$
\text { 2. If } \begin{aligned}
\operatorname{Pr}(1) & =0.2, \operatorname{Pr}(2)=0.3, \operatorname{Pr}(3)=0.4, \\
\operatorname{Pr}(4) & =0.1, \operatorname{Pr}(5)=\operatorname{Pr}(6)=0 .
\end{aligned}
$$

Can we obtain $\operatorname{Pr}(\{1,2,4\})$?

A simple lemma

Lemma: For any two events E_{1} and E_{2}

$$
\operatorname{Pr}\left(E_{1} \cup E_{2}\right)=\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)-\operatorname{Pr}\left(E_{1} \cap E_{2}\right)
$$

Proof: Let $A=E_{1}-\left(E_{1} \cap E_{2}\right)$ and $B=E_{2}-\left(E_{1} \cap E_{2}\right)$.
Then,

$$
\begin{gathered}
\operatorname{Pr}\left(E_{1} \cup E_{2}\right)=\operatorname{Pr}(A)+\operatorname{Pr}(B)+\operatorname{Pr}\left(E_{1} \cap E_{2}\right), \\
\operatorname{Pr}\left(E_{1}\right)=\operatorname{Pr}(A)+\operatorname{Pr}\left(E_{1} \cap E_{2}\right), \text { and } \\
\operatorname{Pr}\left(E_{2}\right)=\operatorname{Pr}(B)+\operatorname{Pr}\left(E_{1} \cap E_{2}\right),
\end{gathered}
$$

so the lemma follows.

Union Bound

Lemma: For any finite and countably infinite sequence of events $E_{1}, E_{2}, E_{3}, \ldots$

$$
\operatorname{Pr}\left(E_{1} \cup E_{2} \cup E_{3} \ldots\right) \leq \operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)+\operatorname{Pr}\left(E_{3}\right)+\ldots
$$

How to prove??

