CS5314 RANDOMIZED ALGORITHMS

Assignment 2 Due: 2:10 pm, Nov 3, 2011 (before class)

1 Questions

- 1. Generalize the median-finding algorithm to find the kth largest item in a set of n items for any given value of k. Prove that your resulting algorithm is correct, and bound its running time.
- 2. A fixed point of a permutation $\pi : [1, n] \to [1, n]$ is a value for which $\pi(x) = x$. Find the variance in the number of fixed points of a permutation chosen uniformly at random from all permutations.

Hint: Let X_i be an indicator such that $X_i = 1$ if $\pi(i) = i$. Then, $\sum_{i=1}^n X_i$ is the number of fixed points. You cannot use linearity to find $\operatorname{Var}\left[\sum_{i=1}^n X_i\right]$, but you can calculate it directly.

3. The weak law of large numbers state that, if X_1, X_2, X_3, \ldots are independent and identically distributed random variables with finite mean μ and finite standard deviation σ , then for any constant $\varepsilon > 0$ we have

$$\lim_{n \to \infty} \Pr\left(\left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| > \varepsilon \right) = 0.$$

Use Chebyshev's inequality to prove the weak law of large numbers.

- 4. If X is a binomial random variable Bin(n, 1/2) with $n \ge 1$, show that the probability that X is even is 1/2.
- 5. Prove that $E[X^k] \ge (E[X])^k$ for any positive even integer k.
- 6. (Further studies: No marks) For a random variable X with standard deviation $\sigma(X)$, and any positive real number t, Chebyshev's inequality implies that

$$\Pr(X - \mathbb{E}[X] \ge t\sigma(X)) \le \Pr(|X - \mathbb{E}[X]| \ge t\sigma(X)) \le \frac{1}{t^2}$$

Indeed, we can bound $\Pr(X - \mathbb{E}[X] \ge t\sigma(X))$ slightly tighter. Show that

$$\Pr(X - \mathbb{E}[X] \ge t\sigma(X)) \le \frac{1}{1 + t^2}.$$

7. (Further studies: No marks) Previously, we have shown the expected time for the Randomized Quicksort to sort n numbers is $O(n \log n)$. Here, we want to prove further that the algorithm runs in $O(n \log n)$ time with high probability. Consider the following view of Randomized Quicksort. Every point in the algorithm where it decides on a pivot element is called a *node*. Suppose the size of the set to be sorted at a particular node is s. The node is called *good* if the pivot element divides the set into two parts, each of size not exceeding 2s/3. Otherwise, the node is called *bad*.

The nodes can be thought of as forming a tree in which the root node has the whole set to be sorted and its children have the two sets formed after the first pivot step and so on.

- (a) Show that the number of good nodes in any path from the root to a leaf in this tree is not greater than $c \log_2 n$, where c is some positive constant.
- (b) Show that, with high probability (greater than $1 1/n^2$), the number of nodes in a given root to a leaf path of the tree is not greater than $c' \log_2 n$, where c' is another constant. (*Hint:* If c' is much larger than c, there must be many bad nodes on the path... Will that be likely to occur?)
- (c) Show that, with high probability (greater than 1 1/n), the number of nodes in the *longest* root to leaf path is not greater than $c' \log_2 n$. (*Hint:* How many nodes are there in the tree?)
- (d) Use your answers to show that the running time of Randomized Quicksort is $O(n \log n)$ with probability at least 1 1/n.