CSbH314
Randomized Algorithms

Lecture 8: Moments and Deviations
(Common Variance, Chebyshev Inequality)



Objectives

» Variances of Bin(h,p) and Geo(p)

* Chebyshev's Inequality



Variance of Binomial RV

Lemma: Let X be a binomial random
variable with parameters n and p. Then,

Var[X] = np(1-p)

How do we get that?
Recall: Var[X] = E[(X- E[X])?
= E[X?]- (E[X])




First Proof (computing E[X?])

E[X?]= 2o <0 §2 Pr(X=))
= 2o« j<n 2 CIPI(1-p)M
= 2o <j<n GG-DH)CpI (1-p)™
= 2 < j<n J(j-1) Cipi (1-p)™
+ 2125 CpI (1-p)™

By expanding C;' term, we get:



First Proof (computing E[X?])
E[X?]
=n(n-1)p2 2, ., CI5 pi2 (1-p)™
+npZy .o, Ciapit (L-p)

= I‘\(I‘\-l)p2 (p + (l-p))”‘2 + np (p + (l-p))”‘l
= n(n-1)p? + np



First Proof (computing E[X?])

Since Var[X] = E[X? ]- (E[X])?, we have:

Var[X] = n(n-1)p? + np - (np)?
= n?p? - np? + np - n2p2
= np - np?
= np(1-p)



Second Proof (using indicator)

Binomial r.v. X = Bin(n,p) can be written as
the sum of n independent indicator, X;,
X,, .., X, each succeeds with probability p

Thatis, X=X, +X,+ ..+ X,

So, Var[X] = Var[X;]+ Var[X,]+ .. + Var[X,]
= n Var[X,]



Second Proof (using indicator)

Var[X,] = E[(X,- E[X,])?]
- (l—p)z Pr'(X1=1) + (O—|:))2 PP(X1=O)
= (1-p)?p + p*(1-p)
= p(1-p)(1-p + p) = p(1-p)
Thus,
Var[X] = n Var[X,] = np(1-p)



Variance of Geometric RV

Lemma: Let X be a geometric random
variable with parameter p. Then,

Var[X] = (1-p)/p?

How do we get that?



First Proof (computing E[X2])
E[X?] =2.0 j2Pr(X =)
= Zj .0d?p (1-ppt
= [ p/(1-p) ] x Zj.0J%(1-p)
To get E[X? ], it remains o compute the
value of 2., j2(1-p)

Before that, let's look at some equalities

10



First Proof (computing E[X?])

For |x| <1,
(a) 1/(1-x) = 2. o X
(b) By differentiating (a), we get

1/(1-x)% = 2,0 § XV
(c) By differentiating (b), we get

2/(1-x) = 2.0 (j-1) xi*2
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First Proof (computing E[X?])
Using the previous equalities,
Zj L0 Jo X
= ijoJ(J‘l) x) + ijo Jx
= 2x%/(1-x)3 + x/(1-x)?
= (2x% + x(1-x) ) / (1-x)3
= (x2+x)/ (1-x)3

12



First Proof (computing E[X?])
So,
E[X21=[ p/(1-p) ] x 2,02 (1-p)
= [ p/(1-p) ] x ((1-p)*+(1-p)) / (1-(1-p))°
= [ p/(1-p) 1 x ((1-p)(2-p)) / p3
= (2-p)/p?
Then,

Var[X] = E[X?]- (E[X])?
= (2-p)/p?- (1/p)? = (1-p)/p?
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Second Proof (by memory-less property)

Let Y be a random variable such that
Y=1 if the first trial succeeds, and
Y=0 if the first trial fails

Then,
E[X2] = Pr(Y=1) E[X?|Y=1]
+ Pr(Y=0) E[X?|Y=0]
= p E[X?|Y=1] + (1-p) E[X?|Y=0]
= p + (1-p) E[X?|Y=0]
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Second Proof (by memory-less property)

We want to get E[X?|Y=0] ..
Let Z = #remaining trials until first success
In this case (Y=0), we have X =Z + 1
So, E[X?|Y=0]= E[(Z+1)?] .. [why?]
= E[Z2+27+1] = E[Z?] + 2E[Z] + 1

But from the memory-less property,
E[Z%] = E[X?] and E[Z]= E[X]
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Second Proof (by memory-less property)

So, E[X?]=p + (1-p) E[X?|Y=0]
= p + (1-p) (E[X?] + 2E[X] + 1)
= p+ (1-p) (E[X?] + 2/p + 1)

Rearranging terms,
p E[X?]=p +2(1-p)/p + (1-p)
=1+ (2-2p)/p = (2-p)/p

Again, E[X?]= (2-p)/p?
= Var[X] = (1-p)/p? as before
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Chebyshev Inequality
Theorem: For any positive q,
Pr(|1X - E[X]| > a) < Var[X]/a?

Total Area

/\/’ < Var[X]/ a2
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Proof

By using Markov Inequalitylll

Pr( |X -E[X]| 2a)

= Pr( (X -E[X]?=a%)

< E[(X - E[X])?] /a? [by Markov inequality]
= Var[X]/a®
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Chebyshev Inequality

(other variations)

Corollary: For any positive r,

Pr(|X - E[X]| = ro[X]) < 1/r2

Corollary: For any positive r,

Pr(|X - E[X]| > rE[X]) <Var[X]/(r E[X])?
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Markov vs Chebyshev

* When applying Chebysheyv :

1. X can take on negative values
2. Need Var[X] to get the bound

3. Often give better bounds than Markov
(since it is based on more information)
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Markov vs Chebyshev
(Example 1)

Suppose we flip a fair coin n times

Question: Can we bound the probability of
more than 3n/4 heads?

Let X = number of heads. So, E[X]=n/2
By Markov Inequality,

Pr(X > 3n/4) < E[X]/ (3n/4)
=(n/2)/ (3n/4) =2/3
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Markov vs Chebyshev
(Example 1)
Let's use Chebyshev Inequality instead:
Again, X = number of heads
So, E[X]=n/2 and Var[X] = n/4 .. [why?]

Then, we have

Pr(X = 3n/4)

<Pr(|X - E[X]| = n/4) ..[why?]

< Var[X]/ (n/4)?

=4/n .. much better bound than 2/3!!
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Markov vs Chebyshev
(Example 2)

Let us revisit Coupon Collector's problem:

There are a total of n different cards.
Each time, the card we buy is chosen
independently and uniformly at random
from the n cards.

Let X = number of cards we need to buy
Previously, we get E[X] = nH(n)
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Markov vs Chebyshev
(Example 2)

Question: Can we bound the probability of
buying more than 2nH(n) cards?

By Markov Inequality,

Pr(X = 2nH(n))
E[X]/ (2nH(n))
nH(n) / (2nH(n))
1/2

A
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Markov vs Chebyshev
(Example 2)

Question:
How about using Chebyshev Inequality?

To apply the inequality, we need to get
Var[X] .. What is this value?
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Markov vs Chebyshev
(Example 2)

Let X. = #cards bought to get a hew card
after collecting exactly i-1 distinct cards

S0, X=X;+X,+ ..+ X,
Also, the variables X. are all independent!
Thus,

Var[X] = Var[X;] + Var[X,] + .. + Var[X,]
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Markov vs Chebyshev
(Example 2)

What is Var[X,]?

Recall: X, is Geo(p) with p = (n-k+1)/n
Thus,
Var[X,] = (1-p)/p?
< 1/p?
= n%/(n-k+1)?
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Markov vs Chebyshev
(Example 2)

So, Var[X] = Var[X,] + Var[X,] + .. + Var[X,]
< n¢/(n)?+ n?/(n-1)2+ ... + n2/(1)?
< 2n?

Now, by Chebyshev Inequality,
Pr(X = 2nH(n)) < Pr(|X - E[X]| = nH(n))
< Var[X]/ (nH(n))?
< 2n%/ (nH(n))?
= O(1/log® n) .. much better than 1/21l
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