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CS5314
Randomized Algorithms

Lecture 8: Moments and Deviations
(Common Variance, Chebyshev Inequality)
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•Variances of Bin(n,p) and Geo(p)

•Chebyshev’s Inequality

Objectives
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Variance of Binomial RV
Lemma: Let X be a binomial random

variable with parameters n and p. Then,
Var[X] = np(1-p)

How do we get that?
Recall: Var[X] = E[(X- E[X])2]

= E[X2 ]–(E[X])2
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E[X2 ] = 0 j n j2 Pr(X=j)

= 0 j n j2 pj (1-p)n-j

= 0 j n (j(j-1)+j) pj (1-p)n-j

= 2 j n j(j-1) pj (1-p)n-j

+ 1 j n j pj (1-p)n-j

By expanding term, we get:

First Proof (computing E[X2])
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E[X2 ]

= n(n-1)p2 2 j n pj-2 (1-p)n-j

+ np1 j n pj-1 (1-p)n-j

= n(n-1)p2 (p + (1-p))n-2 + np (p + (1-p))n-1

= n(n-1)p2 + np

First Proof (computing E[X2])
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Since Var[X] = E[X2 ]–(E[X])2, we have:

Var[X] = n(n-1)p2 + np –(np)2

= n2p2 - np2 + np –n2p2

= np - np2

= np(1-p)

First Proof (computing E[X2])
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Binomial r.v. X = Bin(n,p) can be written as
the sum of n independent indicator, X1,
X2, …, Xn, each succeeds with probability p

That is, X = X1 + X2 + …+ Xn

So, Var[X] = Var[X1] + Var[X2] + …+ Var[Xn]
= n Var[X1]

Second Proof (using indicator)



8

Var[X1] = E[(X1 - E[X1])2]
= (1-p)2 Pr(X1=1) + (0-p)2 Pr(X1=0)
= (1-p)2p + p2(1-p)
= p(1-p)(1-p + p) = p(1-p)

Thus,
Var[X] = n Var[X1] = np(1-p)

Second Proof (using indicator)
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Variance of Geometric RV
Lemma: Let X be a geometric random

variable with parameter p. Then,
Var[X] = (1-p)/p2

How do we get that?
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E[X2 ] = j 0 j2 Pr(X = j)

= j 0 j2 p (1-p)j-1

= [ p/(1-p) ] £j 0 j2 (1-p)j

To get E[X2 ], it remains to compute the
value of j 1 j2 (1-p)j

Before that, let’s look at some equalities

First Proof (computing E[X2])
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For |x| 1,

(a) 1/(1-x) = j 0 xj

(b) By differentiating (a), we get

1/(1-x)2 = j 0 j xj-1

(c) By differentiating (b), we get

2/(1-x)3 = j 0 j(j-1) xj-2

First Proof (computing E[X2])
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Using the previous equalities,

j 0 j2 xj

= j 0 j(j-1) xj + j 0 j xj

= 2x2/(1-x)3 + x/(1-x)2

= (2x2 + x(1-x) ) / (1-x)3

= (x2 + x) / (1-x)3

First Proof (computing E[X2])
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So,
E[X2 ] = [ p/(1-p) ] £j 0 j2 (1-p)j

= [ p/(1-p) ] £ ((1-p)2+(1-p)) / (1-(1-p))3

= [ p/(1-p) ] £ ((1-p)(2-p)) / p3

= (2-p)/p2

Then,
Var[X] = E[X2 ]–(E[X])2

= (2-p)/p2 –(1/p)2 = (1-p)/p2

First Proof (computing E[X2])
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Let Y be a random variable such that
Y=1 if the first trial succeeds, and
Y=0 if the first trial fails

Then,
E[X2] = Pr(Y=1) E[X2|Y=1]

+ Pr(Y=0) E[X2|Y=0]
= p E[X2|Y=1] + (1-p) E[X2|Y=0]
= p + (1-p) E[X2|Y=0]

Second Proof (by memory-less property)
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We want to get E[X2|Y=0] …
Let Z = #remaining trials until first success

In this case (Y=0), we have X = Z + 1

So, E[X2|Y=0] = E[(Z+1)2] …[why?]

= E[Z2+2Z+1] = E[Z2] + 2E[Z] + 1

But from the memory-less property,
E[Z2] = E[X2] and E[Z] = E[X]

Second Proof (by memory-less property)
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So, E[X2] = p + (1-p) E[X2|Y=0]
= p + (1-p) (E[X2] + 2E[X] + 1)
= p + (1-p) (E[X2] + 2/p + 1)

Rearranging terms,
p E[X2] = p + 2(1-p)/p + (1-p)

= 1 + (2-2p)/p = (2-p)/p

Again, E[X2] = (2-p)/p2

 Var[X] = (1-p)/p2 as before

Second Proof (by memory-less property)
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Chebyshev Inequality
Theorem: For any positive a,

Pr(|X - E[X]| a) · Var[X]/a2

Total Area
Var[X] / a2

aa
X

E[X]
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Proof

By using Markov Inequality!!!

Pr( |X - E[X]| a )
= Pr( (X - E[X])2 a2 )
 E[(X - E[X])2] /a2 [by Markov inequality]

= Var[X] /a2
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Chebyshev Inequality
(other variations)

Corollary: For any positive r,

Pr(|X - E[X]| r[X] ) · 1/r2

Corollary: For any positive r,

Pr(|X - E[X]| rE[X] ) ·Var[X]/(rE[X])2
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Markov vs Chebyshev

•When applying Chebyshev :

1. X can take on negative values

2. Need Var[X] to get the bound

3. Often give better bounds than Markov
(since it is based on more information)
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Markov vs Chebyshev
(Example 1)

Suppose we flip a fair coin n times
Question: Can we bound the probability of

more than 3n/4 heads?
Let X = number of heads. So, E[X] = n/2
By Markov Inequality,

Pr(X 3n/4) E[X] / (3n/4)
= (n/2) / (3n/4) = 2/3
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Markov vs Chebyshev
(Example 1)

Let’s use Chebyshev Inequality instead:
Again, X = number of heads

So, E[X] = n/2 and Var[X] = n/4 …[why?]

Then, we have
Pr(X 3n/4)
Pr(|X - E[X]| n/4) …[why?]

Var[X]/ (n/4)2

= 4/n …much better bound than 2/3!!!
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Markov vs Chebyshev
(Example 2)

Let us revisit Coupon Collector’s problem:

There are a total of n different cards.
Each time, the card we buy is chosen
independently and uniformly at random
from the n cards.

Let X = number of cards we need to buy
Previously, we get E[X] = n H(n)
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Markov vs Chebyshev
(Example 2)

Question: Can we bound the probability of
buying more than 2n H(n) cards?

By Markov Inequality,

Pr(X 2n H(n))
E[X] / (2nH(n))
= n H(n) / (2nH(n))
= 1/2
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Markov vs Chebyshev
(Example 2)

Question:
How about using Chebyshev Inequality?

To apply the inequality, we need to get
Var[X] … What is this value?
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Markov vs Chebyshev
(Example 2)

Let Xi = #cards bought to get a new card
after collecting exactly i-1 distinct cards

So, X = X1 + X2 + …+ Xn

Also, the variables Xi are all independent!
Thus,

Var[X] = Var[X1] + Var[X2] + …+ Var[Xn]
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Markov vs Chebyshev
(Example 2)

What is Var[Xk]?

Recall: Xk is Geo(p) with p = (n-k+1)/n
Thus,

Var[Xk] = (1-p)/p2

1/p2

= n2/(n-k+1)2
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Markov vs Chebyshev
(Example 2)

So, Var[X] = Var[X1] + Var[X2] + …+ Var[Xn]
n2/(n)2 + n2/(n-1)2 + …+ n2/(1)2

2n2

Now, by Chebyshev Inequality,
Pr(X 2n H(n)) Pr(|X - E[X]| n H(n))
Var[X] / (nH(n))2

2n2 / (nH(n))2

= O(1/log2 n) …much better than 1/2!!!


