
1

CS5314
Randomized Algorithms

Lecture 6: Discrete Random
Variables and Expectation

(Coupon Collection, Quicksort)

2

•Discuss the Coupon Collector’s problem

•Analyze expected runtime of Quicksort

•Before that, we define Harmonic
number, and give a close bound for that

Objectives

3

Harmonic Number

Definition: For a positive integer n, the
Harmonic number H(n) = k=1 to n 1/k

Lemma: loge (n+1) H(n) loge n + 1

How to prove?

4

Proof (Left Inequality)

kth rectangle has
height 1/k

f(x) = 1/x

1 2 3 … …

loge (n+1) = s
1
n+1 (1/x) dx

 Area under red curve
from x=1 to x=n+1

H(n) = k=1 to n (1/k)

 Area of the first n
rectanglesn n+1

5

loge (n+1) = s
1
n+1 (1/x) dx

= s
1
2 (1/x)dx + s

2
3 (1/x)dx + …+ s

n
n+1 (1/x)dx

s
1
2 (1/1)dx + s

2
3 (1/2)dx + …+ s

n
n+1 (1/n)dx

= 1 + (1/2) + … + 1/n = H(n)

Proof (Left Inequality)

6

Proof (Right Inequality)

kth rectangle has
height 1/(k+1)

f(x) = 1/x

1 2 3 … …

loge n = s
1
n (1/x) dx

 Area under red curve
from x=1 to x=n

H(n) - 1 = k=2 to n (1/k)

 Area of the first n-1
rectanglesn-1 n

7

1 + loge n = 1 + s
1
n (1/x) dx

= 1 + s
1
2 (1/x)dx + s

2
3 (1/x)dx + …+ s

n-1
n (1/x)dx

1 + s
1
2 (1/2)dx + s

2
3 (1/3)dx + …+ s

n-1
n (1/n)dx

= 1+ (1/2) + … + 1/n = H(n)

Proof (Right Inequality)

8

Coupon Collector’s Problem
Suppose that if we buy $660 of items from

Family Mart, we can pick one of the 10
different deities (uniformly at random)

You are thinking about collecting all these.
How much money do you expect to pay?

9

Coupon Collector’s Problem (2)

Let us solve a more general problem:
•Suppose there are n different cards.
•Each time, the card you obtain is chosen

independently and uniformly at random
from the n cards

What is the expected number of cards
bought in order to get a full collection?

10

Coupon Collector’s Problem (3)

Let X = #cards bought to get full collection
 we are interested in E[X]

Let Xi = #cards bought to get a new card,
after we have just collected exactly
i-1 distinct cards

So, X = X1 + X2 + …+ Xn 
E[X] = E[X1] + E[X2] + …+ E[Xn]

11

Coupon Collector’s Problem (4)

What is E[Xk] ?

After we have just collected k-1 cards, let
p be the probability that the next card
is a new one  p = (n-k+1)/n

Note that Xk is a geometric random
variable, so E[Xk] = 1/p = n/(n-k+1)

12

Coupon Collector’s Problem (5)

Therefore,
E[X]
= E[X1] + E[X2] + …+ E[Xn]
= n/n + n/(n-1) + n/(n-2) + …+ n/1
= n H(n)
= n loge n + (n)

13

Quicksort

•Quicksort is an algorithm for sorting a
set of numbers, where the operations
are based on comparison

•It is very efficient in practice
• input = a list of numbers
• output = a sorted list of input numbers

14

Quicksort(S) {
1. If |S| 1, return S
2. Else, pick an item, say x, from S
3. Divide S into S1 and S2 such that

S1 = a list of all items smaller than x
S2 = a list of all items greater than x

4. List1 = Quicksort(S1)
5. List2 = Quicksort(S2)
6. return List1, x, List2

}
// Step 3 is done by comparing each item with x

15

Quicksort (2)

Suppose S contains n numbers.
•In the worst case, how many comparison

operations are performed?
Ans. n(n-1)/2

•Suppose each call of Quicksort chooses
the median of S as x. How many
comparisons are performed?
Ans. O(n log n)

16

Quicksort (3)
One way to guarantee the median is picked

is to run the Median-Finding algorithm,
which takes O(|R|) extra comparison
when we are calling Quicksort(R)

 worst-case O(n log n) time

One drawback: need to write codes for the
Median-Finding algorithm…

Suppose we are lazy, what can we do?

17

Randomized Quicksort
Let us use randomization to help…
When we call Quicksort(R), suppose:

In Step 2, we choose x by picking an item
uniformly at random from R

 Let’s call this: Randomized Quicksort

Can we bound expected # of comparisons of
Randomized Quicksort?

18

Randomized Quicksort (analysis)

Observation: In (Randomized) Quicksort,
two items can be compared at most once

Let X = number of comparisons
Let Xij = random variable with:

Xij = 1 if ith smallest item is compared
with jth smallest item

Xij = 0 otherwise

So, X = i<j Xij  E[X] = i<j E[Xij]

19

Randomized Quicksort (analysis)

Note: Xij is an indicator random variable !!
Thus,

E[Xij] = Pr(Xij = 1)
= Pr(ith smallest item is compared

with jth smallest item)

What is this probability?

20

Randomized Quicksort (analysis)

Observation: yi is compared with yi if and
only if among all items in

{ yi, yi+1, yi+2, …, yj },
either yi or yj is picked by Step 2 before
the others [why?]

Thus, E[Xij] = Pr(Xij = 1) = 2/(j-i+1)

Let yk = kth smallest item in S

21

So, E[X] = i<j E[Xij]

= i=1 to n-1j=i+1 to n 2/(j-i+1)

= i=1 to n-1k=2 to n-i+1 2/k

= k=2 to ni=1 to n-k+1 2/k

= k=2 to n (n-k+1) 2/k

= [(n+1) k=2 to n 2/k] –2(n-1)

= (2n+2)H(n) –4n = 2n loge n + (n)

changing role
of i and k

pulling out –k
term

22

Randomized Quicksort (analysis)

Conclusion:

For any input list of numbers,
Expected # of comparisons in

Randomized Quicksort
= 2n loge n + (n)

23

Deterministic Quicksort
(on random input)

Another related problem is as follows:
•Suppose that each time when we call

Quicksort(R), at Step 2, we pick the
leftmost item in the list R

•The worst-case # of comparisons in this
deterministic algorithm is O(n2)
•Interesting, if input list is sorted,

it becomes a worst-case here !

24

Deterministic Quicksort (2)
(on random input)

Now, suppose that given a set of n number
to be sorted, each permutation these
numbers are equally likely to be input list

•What is the expected # of comparisons
for this deterministic algorithm?

Note: Expectation is now over all input, instead of
over all choice of x picked in Step 2

25

Deterministic Quicksort (2)
(on random input)

The expected number of comparisons is
2n loge n + (n)

To obtain this, we essentially use the same
idea as we analyze Randomized Quicksort.
Again, the probability that ith smallest
item is compared with jth smallest item
= 2/(j-i+1)… [why?]

 Thus, we get the same bound

26

Quick Quiz

A permutation : [1,n]  [1,n] can be
represented by a graph with n vertices,
labeled by 1, 2, …, n, as follows:

•If (j) = k, draw a directed edge from
vertex j to vertex k

If each permutation is equally likely, what is
the expected # of cycles in the graph?

