
CS5314
Randomized Algorithms

Lecture 5: Discrete Random Variables
and Expectation

(Conditional Expectation, Geometric RV)



•Introduce Geometric RV
•We then introduce

–Conditional Expectation
–Application:

•Alternative proof of expectation of a
geometric RV

•Solving the branching process problem

Objectives



Geometric Random Variable
Definition: A geometric random variable X

with parameter p, denoted by Geo(p), is
defined by the following probability
distribution on r = 1,2,…:

Pr(X = r) = p(1-p)r-1

The event “X = r”represents it takes
exactly r independent trials to get the
first success, where each trial succeeds
with probability p



Memory-less property of
Geometric Random Variable

Suppose we have already failed k times.
What is the probability that we still need

exactly n more trials to get the first
success?

Ans: p(1-p)n-1

Note that this probability is independent
of how many times we have failed !!!



Memory-less Property
Lemma: For a geometric random variable

X with parameter p

Pr(X = n+k | Xk ) = Pr(X = n)

How to prove?



Pr(X = n+k | Xk )

= Pr( (X = n+k) \ (Xk) ) / Pr(Xk)

= Pr(X = n+k) / Pr(Xk)

= p(1-p)n+k-1 / j¸k+1 p(1-p)j-1

= p(1-p)n+k-1 / (1-p)k

= p(1-p)n-1

= Pr(X = n)

Memory-less Property (proof)



A Useful Formula
Lemma: Let X be a discrete random

variable that takes on non-negative
integral values. Then,

E[X] = i=1,2,... Pr(X ¸ i)

Proof:
i=1,2,... Pr(X ¸ i) = i=1,2,...j=i,i+1,... Pr(X = j)

= j=1,2,...i=1,2,...,j Pr(X = j)
= j=1,2,... j Pr(X = j) = E[X]



A Useful Formula (2nd proof)

Pr(X=1)

2*Pr(X=2)

……

3*Pr(X=3)

4*Pr(X=4)
E[X]

Pr(X 1)

Pr(X 2)

Pr(X 3)



i=1,2,... Pr(X ¸ i)

sums up

sums up…



Expectation of Geo(p)
Lemma: Let X be a geometric random

variable with parameter p. Then,
E[X] = 1/p

Proof: For the random variable Geo(p),
Pr(X ¸ i) = n=i,i+1,... p(1-p)n-1 = (1-p)i-1

Thus, E[X] = i=1,2,... Pr(X ¸ i)

= i=1,2,... (1-p)i-1 = 1/(1-(1-p)) = 1/p



Conditional Expectation
Definition: The conditional expectation of

a random variable X given that event F
occurs is defined as:

E[X|F] = i i Pr(X=i | F)

Suppose X and Y are two random variables.

Then, E[X|Y=j] = i i Pr(X=i | Y=j)



Let X = sum of two fair dice, and
X1 = result of the first die

• Without any information, E[X] = 7
• Suppose we know the outcome of first

die, X1, is 2.
 Do we still `expect’the sum of two

dice to be 7? Should the sum be
larger now? or smaller?

• That is, what is E[X| X1=2] ?

Example



E[X| X1=2]

= i i Pr(X=i | X1=2)

= i=3,4,...,8 i Pr(X=i | X1=2)

= i=3,4,...,8 i (1/6)

= 33/6

= 5.5

Example (cont)



An Identity
Lemma: For any random variables X and Y

E[X] = j Pr(Y=j) E[X|Y=j]

How to prove?



j Pr(Y=j) E[X|Y=j]

= j Pr(Y=j) i i Pr(X=i | Y=j)

= i j i Pr(Y=j) Pr(X=i | Y=j)

= i i j Pr(X=i \ Y=j)

= i i Pr(X=i)
= E[X]

Proof



Another Lemma

Lemma: E[X|Y=j] = X() Pr(|Y=j)

How to prove?

…similar to proving E[X] = X() Pr()



Expectation of Geo(p) (revisited)

Another way to find E[X] for X = Geo(p) is
by using the memory-less property:

Let Y be a random variable such that
Y=1 if the first trial succeeds, and
Y=0 if the first trial fails

E[X] = Pr(Y=1) E[X|Y=1] + Pr(Y=0) E[X|Y=0]
= p E[X|Y=1] + (1-p) E[X|Y=0]
= p + (1-p) (1+E[X]) [why??]

= (1-p) E[X] + 1  E[X] = 1/p



Linearity of
Conditional Expectation

Lemma: For any finite collection of random
variables X1, X2, …, Xk, each with finite
expectation, and for any random variable Y

E[i Xi | Y=j ] = i E[Xi | Y=j ]

How to prove?

…similar to proving E[i Xi ] = i E[Xi ]



A new notation: E[X| Y]
Definition: Let X and Y be two random

variables. The expression E[X| Y] is a
random variable that takes on the value
E[X| Y=j ] when Y = j

Is each the following a constant?

E[X], E[X| Y=j ], E[X|Y], E[ E[X|Y] ]

Note: E[X|Y] is not a constant…its value depends
on Y so that it is a function of Y



Ex: Let X = sum of two fair dice, and
Y = outcome of the first dice

E[X| Y ] = i i Pr(X=i | Y)

= i= Y+1, Y+2, ... , Y+6 i Pr(X=i | Y)

= i= Y+1, Y+2, ... , Y+6 i (1/6)

= Y+ 3.5

E[X| Y] is a function of Y



What is E[E[X|Y]] ?
Theorem: Let X and Y be two random

variables. Then,

E[X] = E[E[X|Y]]

Proof:
E[E[X|Y]]
= j E[X|Y=j] Pr(Y=j)
= E[X]



Imagine we have a strange program P which,
before it finishes running, will create a
random number of new copies of itself

Now, consider running the first copy of P.
•Before this P finishes its execution, it may

create some new copies of P
•Similarly, before each such P finishes its

execution, it may create some new copies
of P, and so on …

Branching Process Problem



Branching Process Problem

P

P P
P

P
P

P
P



Suppose we now know that:
the number of new copies each P creates
is a binomial random variable Bin(n,p)

Question:
What is the expected number of copies of
P created?

Branching Process Problem



Let us introduce the idea of generations.
The initial copy of P is in generation 0.
For other copy, it is in generation i if it is

created by a copy of P in generation i-1.
Let Yi = number of copies in generation i
Thus,

Y0 = 1 and E[Y1] = np

Branching Process Problem



Our target is to find
E[Y0 + Y1 + Y2 + Y3 +…]

= E[Y0] + E[Y1] + E[Y2] + …

The first two terms are known.
For the remaining terms, such as E[Y2], it

may be easy to compute IF we know the
exact number of copies in the previous
generation … Unluckily, we don’t know that

Branching Process Problem



Anyway, let us see what if we “know”that the
number of copies in generation i-1 is j

[ It cannot hurt to try ]

Question: Can we find E[Yi| Yi-1= j] ?
Here, we have j copies in generation i-1
Let Zk = # new copies created by kth P in

generation i-1

Branching Process Problem



E[Yi| Yi-1= j]

= E[k=1,2, ... ,j Zk | Yi-1= j]

= k=1,2, ... ,j E[Zk | Yi-1= j]

= k=1,2, ... ,jr r Pr(Zk = r | Yi-1= j)

= k=1,2, ... ,jr r Pr(Zk = r)

= k=1,2, ... ,j E[Zk ] = j np

Branching Process Problem



Then, we have:
E[Yi] = E[ E[Yi| Yi-1] ]

= j E[Yi|Yi-1=j] Pr(Yi-1=j)

= j j np Pr(Yi-1=j)

= np j j Pr(Yi-1=j)
= np E[Yi-1]

Though we still don’t know what exactly E[Yi]
is, we get a very useful relationship

Branching Process Problem



In other words,

E[Y0] = Y0 = 1 = (np)0

E[Y1] = np
E[Y2] = np E[Y1] = (np)2

E[Y3] = np E[Y2] = (np)3


E[Yi] = (np)i

Branching Process Problem



Total copies = i¸0 Yi

Thus, expected total copies

= E[i¸0 Yi] = i¸0 E[Yi] = i¸0 (np)i

If np ¸ 1, the above term is unbounded.

If np 1, the above term is 1/(1-np)

Branching Process Problem


