1. Let G be a random graph drawn from the $G_{n,p}$ model.
 (a) (10%) What is the expected number of 5-clique in G?
 (b) (10%) What is the expected number of 5-cycle in G?

2. Suppose we have a set of n vectors, v_1, v_2, \ldots, v_n, in \mathbb{R}^m. Each vector is of unit-length, i.e., $\|v_i\| = 1$ for all i. In this question, we want to show that, there exists a set of values, $\rho_1, \rho_2, \ldots, \rho_n$, each $\rho_i \in \{-1, +1\}$, such that
 \[
 \|\rho_1v_1 + \rho_2v_2 + \cdots + \rho_nv_n\| \leq \sqrt{n}.
 \]
 This result shows that if we are allowed to “reflect” each v_i as we wish (i.e., by replacing v_i by $-v_i$), then it is possible that the resultant vector formed by the sum of the n vectors has length at most \sqrt{n}.
 (a) (10%) Let $V = \rho_1v_1 + \rho_2v_2 + \cdots + \rho_nv_n$, and recall that
 \[
 \|V\|^2 = V \cdot V = \sum_{i,j} \rho_i\rho_j v_i \cdot v_j.
 \]
 Suppose that each ρ_i is chosen uniformly at random to be -1 or +1. Show that
 \[
 E[\|V\|^2] = n.
 \]
 Hint:
 • What is the value of $E[\rho_i\rho_j]$ when $i \neq j$?
 • What is the value of $E[\rho_i\rho_i]$?
 • What is the value of $v_i \cdot v_i$?
 (b) (5%) Argue that there exists a choice of $\rho_1, \rho_2, \ldots, \rho_n$ such that $\|V\| \leq \sqrt{n}$.
 (c) (5%) Your friend, Peter, is more ambitious, and asks if it is possible to choose $\rho_1, \rho_2, \ldots, \rho_n$ such that $\|V\| < \sqrt{n}$ instead of $\|V\| \leq \sqrt{n}$ we have just shown. Give a counter-example why this may not be possible.

3. (40%) Consider a graph in $G_{n,p}$, with $p = 1/n$. Let X be the number of triangles in the graph, where a triangle is a clique with three edges. Show that
 \[
 \Pr(X \geq 1) \leq 1/6
 \]
 and that
 \[
 \lim_{n \to \infty} \Pr(X \geq 1) \geq 1/7
 \]
 Hint: Use the conditional expectation inequality.

4. (20%) Use the general form of the Lovasz local lemma to prove that the symmetric version can be improved by replacing the condition $4dp \leq 1$ by the weaker condition $ep(d+1) \leq 1$.