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Solution to assignment 3

Question 1

[Question 1]: Let X be a Poisson random variable with mean λ.

1. What is the most likely value of X

1.1 when λ is an integer?
1.2 when λ is not an integer?

Hint: Compare Pr(X = k + 1) with Pr(X = k).

2. We define the median of X to be the least number m such
that Pr(X ≤ m) ≥ 1/2. What is the median of X when
λ = 3.9?
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Question 1

[Solution]: X is a Poisson random variable, therefore we know that

Pr(X = k) =
e−λλk

k!

Pr(X = k + 1) =
e−λλk+1

(k + 1)!

Compare Pr(X = k) and Pr(X = k + 1)

Pr(X = k + 1)

Pr(X = k)
=

e−λλk+1

(k+1)!

e−λλk

k!

=
λ

k + 1

When λ is an integer, both λ and λ− 1 are the most likely values.
When λ is not an integer, X = bλc is the most likely value.



Randomized algorithm

Solution to assignment 3

Question 1

[Solution]: By knowing that Pr(X = k) = e−λλk

k! and
Pr(X=k+1)
Pr(X=k) = λ

k+1 , we may calculate Pr(X = i) directly.

Pr(X = 0) =
e−3.9 ∗ −3.90

0!
= 0.0202419114

Pr(X = 1) = Pr(X = 0)
3.9

1
= 0.0789434548

Pr(X = 2) = Pr(X = 1)
3.9

2
= 0.153939737

Pr(X = 3) = Pr(X = 2)
3.9

3
= 0.200121658

Pr(X = 4) = Pr(X = 3)
3.9

4
= 0.195118617

Σ4
i=0Pr(X = i) = 0.6483653782 > 0.5
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Question 2

[Question 2]: Let X be a Poisson random variable with mean µ,
representing the number of criminals in a city. There are two types
of criminals: For the first type, they are not too bad and are
reformable. For the second type, they are flagrant. Suppose each
criminal is independently reformable with probability p (so that
flagrant with probability 1− p). Let Y and Z be random variables
denoting the number of reformable criminals and flagrant criminals
(respectively) in the city. Show that Y and Z are independent
Poisson random variables.
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Question 2

[Solution]: Suppose we have Y = k.

Pr(Y = k) =
∞∑

m=k

Pr(Y = k|X = m)Pr(X = m)

=
∞∑

m=k

(
m

k

)
pk(1− p)m−k e−λλm

m!

=
∞∑

m=k

m!

k!(m − k)!
pk(1− p)m−k e−λλm

m!

=
(λp)ke−λ

k!

∞∑

m=k

(1− p)m−kλm−k

(m − k)!

=
(λp)ke−λ

k!
eλ(1−p)

=
(λp)ke−pλ

k!
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Question 2

[Solution]: We may also get Pr(Z = k) = λ(1− p)ke−(1−p)λ/k!
by the same way. Now we are going to show that Y and Z are
independent.

Pr(Y = k
⋂

Z = j) = Pr(X = k + j)Pr(Y = k|X = k + j)

=
λk+je−λ

(k + j)!

(
k + j

k

)
pk(1− p)j

=
(λp)ke−pλ

k!

(λ(1− p))je−(1−p)λ

j!

= Pr(Y = k)Pr(Z = j)
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Question 3

[Question 3]: Consider assigning some balls to n bins as follows: In
the first round, each ball chooses a bin independently and
uniformly at random.

…


…


…


…
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Question 3

After that, if a ball lands at a bin by itself, the ball is served
immediately, and will be removed from consideration. For the
number of bins, it remains unchanged.

: thrown again


…
 …


: served


…


: served


: thrown again
: thrown again


…
 …


: served
: served


…


: served
: served
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Question 3

In the subsequent rounds, we repeat the process to assign the
remaining balls to the bins. We finish when every ball is served.

…
…
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Question 3

1. Suppose at the start of some round b balls are still remaining.
Let f (b) denote the expected number of balls that will remain
after this round. Given an explicit formula for f (b).

2. Show that f (b) ≤ b2/n.
Hint: You may use Bernoulli’s inequality :

∀r ∈ N and x ≥ −1, (1 + x)r ≥ 1 + rx .

3. Suppose we have n
k balls initially, for some fixed constant

k > 1. Every round the number of balls served was exactly
the expected number of balls to be served. Show that all the
balls would be served in O(log log n) rounds.
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Question 3

[Solution]: (1)

Pr(the i-th bin has exactly 1 ball) = b
1

n
(1− 1

n
)b−1

E[number of bins have 1 ball] = b(1− 1

n
)b−1

f (b) = b − E[number of bins have 1 ball] = b(1− (1− 1

n
)b−1)
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Question 3

[Solution]: (2) By Bernoulli’s inequality: (1− 1
n )b−1 ≥ 1− b−1

n .

f (b) = b(1− (1− 1

n
)b−1))

≤ b(1− (1− b − 1

n
))

=
b(b − 1)

n

≤ b2

n
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Question 3

[Solution]: (3) Consider we have n balls initially.

lim
n→∞ n(1− (1− 1

n
)n−1) = n(1− (1− 1

n − 1
)n) = n(1− 1

e
)

It is like the value of n/k while k is a small constant.

f (n/k) = n/k2 ⇒ f r (n/k) = n/k2r

Let r = logk log2n = O(loglogn), then f r (n/k) = 1.
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Question 4

[Question 4]: Suppose that we vary the balls-and-bins process as
follows. For convenience let the bins be numbered from 0 to n− 1.
There are log2 n players.

0
 1
 2
 n
-
1
…


…


log
2
n
3
2
1


0
 1
 2
 n
-
1
…


…


log
2
n
3
2
1
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Question 4

Each player chooses a starting location ` uniformly at random from
[0, n − 1] and then places one ball in each of the bins numbered
` mod n, ` + 1 mod n, . . . , ` + n/ log2 n − 1 mod n.( Assume that n
is a multiple of log2 n.)

0
 1
 2
 n
-
1
…

2+


n
/lg
n

-
1


…
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Question 4

Show that the maximum load in this case is only
O(log log n/ log log log n) with probability that approaches 1 as
n →∞.
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Question 4

[Solution]:
Since there are log2n players to choose a starting location, we
choose log n bins as representatives.

Pr(some bins get M balls)

≤ Pr(there exist 2 representatives with M/2 balls inside)

≤ log n(
1

(M/2)!
)

≤ log n(
2e

M
)M/2
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Question 4

Now we let M = 6 log log n/ log log log n,

log n(
2e

M
)M/2

≤ log n(
log log log n

log log n
)3 log log n/ log log log n

≤ e log log n(e log log log log n−log log log n)3 log log n/ log log log n

≤ e−2 log log ne3 log log n log log log log n/ log log log n

≤ 1

log n
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Question 5

[Question 5]: We consider another way to obtain Chernoff-like
bound in the balls-and-bins setting without using the theorem in
Page 13 of Lecture 14.
Consider n balls thrown randomly into n bins. Let Xi = 1 if the
i-th bin is empty and 0 otherwise. Let X =

∑n
i=1 Xi .

Let Yi be independent Bernoulli random variable such that Yi = 1
with probability p = (1− 1/n)n. Let Y =

∑n
i=1 Yi .

1. Show that E[X1X2 · · ·Xk ] ≤ E[Y1Y2 · · ·Yk ] for any k ≥ 1.

2. Show that X j1
1 X j2

2 · · ·X jk
k = X1X2 · · ·Xk for any

j1, j2, . . . , jk ∈ N.

3. Show that E[etX ] ≤ E[etY ] for all t ≥ 0.
Hint: Use the expansion for ex and compare E[etX ] to E[etY ].

4. Derive a Chernoff bound for Pr(X ≥ (1 + δ)E[X ]).
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Question 5

[Solution]:
(1) We may calculate the expectation directly.

E[X1X2 · · ·Xk ] = Pr(X1 = 1 ∩ X2 = 1 ∩ . . . ∩ Xk = 1) = (
n − k

n
)n

E[Y1Y2 · · ·Yk ] = Pr(Y1 = 1 ∩ Y2 = 1 ∩ . . . ∩ Yk = 1) = (1− 1

n
)kn

(
n − k

n
)n ≤ (1− 1

n
)kn
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Question 5

The alternative solution(By Induction):

E[X1X2 · · ·XkXk+1]

= E[X1X2 · · ·Xk |Xk+1 = 1]Pr(Xk+1 = 1)

≤ E[X1X2 · · ·Xk ]Pr(Xk+1 = 1)

≤ (1− 1

n
)(k+1)n

= E[Y1Y2 · · ·YkYk+1]
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Question 5

[Solution]:
(2) Xi is an indicator and Xi = 1 when Xi is empty.
If X j1

1 X j2
2 · · ·X jk

k = 1, Xi = 1 for all i .
Then X1X2 · · ·Xk = 1
If X j1

1 X j2
2 · · ·X jk

k = 0, there exists Xi = 0 for at least one i .
Then X1X2 · · ·Xk = 0
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Question 5

[Solution]:
(3)

E[etX ] = E[1 + tX +
(tX )2

2!
+ ...] = E[1] + tE[X ] +

t2

2!
E[X 2] + ...

By (a), we get E[X ] ≤ E[Y ].

E [X 2] = E[(X1X2 · · ·Xn)
2]

= E[(X 2
1 + 2(X1X2 + X1X3 + · · ·+ X1Xn) + X 2

2 + · · ·+ X 2
n ]

≤ E[(Y 2
1 + 2(Y1Y2 + Y1Y3 + · · ·+ Y1Yn) + Y 2

2 + · · ·+ Y 2
n ]

= E [Y 2]

The remaining inequalities E[X i ] ≤ E[X i ] can be proved by the
same way.
Thus, E[etX ] ≤ E[etY ].



Randomized algorithm

Solution to assignment 3

Question 5

[Solution]:
(4) First, we set E[X ] as µ.

Pr(X ≥ (1 + δ)E[X ]) = Pr(etX ≥ et(1+δ)E[X ]) ≤ E[etX ]

et(1+δ)µ

E[etY ] =
∏

E[etYi ] = [(1−p)+pet ]n = [1+p(et−1)] ≤ enp(et−1)

Combine these two inequalities, we get

Pr(X ≥ (1 + δ)E[X ]) ≤ E[etX ]

et(1+δ)µ
=

eµ(et−1)

etµ(1+δ)

Now we set t = ln(1 + δ),

Pr(X ≥ (1 + δ)E[X ]) ≤ eµ(et−1)

etµ(1+δ)
≤ eµδ

(1 + δ)(1+δ)µ
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Question 1

[Question 1]: Let G be a random graph drawn from the Gn,1/2

model.

1. (10%) What is the expected number of 5-clique in G?

2. (10%) What is the expected number of 5-cycle in G?
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Question 1

1. No hint.

2. A 5-cycle is a subset of vertices with size 5.
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Question 2

[Question 2]: Suppose we have a set of n vectors, v1, v2, . . . , vn, in
Rm. Each vector is of unit-length, i.e., ‖vi‖ = 1 for all i . In this
question, we want to show that, there exists a set of values,
ρ1, ρ2, . . . , ρn, each ρi ∈ {−1, +1}, such that

‖ρ1v1 + ρ2v2 + · · ·+ ρnvn‖ ≤
√

n.

Intuitively, if we are allowed to ”reflect” each vi as we wish (i.e., by
replacing vi by −vi ), then it is possible that the vector formed by
the sum of the n vectors is at most

√
n long.
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Question 2

1. Let V = ρ1v1 + ρ2v2 + · · ·+ ρnvn, and recall that

‖V ‖2 = V · V =
∑

i ,j

ρiρjvi · vj .

Suppose that each ρi is chosen uniformly at random to be -1
or +1. Show that

E[‖V ‖2] = n.

2. (5%) Argue that there exists a choice of ρ1, ρ2, . . . , ρn such
that ‖V ‖ ≤ √

n.

3. (5%) Your friend, Peter, is more ambitious, and asks if it is
possible to to choose ρ1, ρ2, . . . , ρn such that

‖V ‖ <
√

n

instead of ‖V ‖ ≤ √
n we have just shown. Give a

counter-example why this may not be possible.
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Question 2

[Hint]:

I Can you show that E[ρiρj ] = 0 when i 6= j?

I What is the value of E[ρiρi ]?

I What is the value of vi · vi?
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Question 3

[Question 3]: Let F be a family of subsets of N = {1, 2, ..., n}. F
is called an antichain if there are no A, B ∈ F satisfying A ⊂ B.
Ex:
N = {1, 2, 3}
All subsets of N :{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
{{1, 3}, {1, 2}, {2, 3}} is an antichain.
{{1, 2, 3}, {1, 2}} is not an antichain. ({1, 2} ⊂ {1, 2, 3})
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Question 3

We want to prove that |F | ≤ ( n
bn/2c

)
. How?

Let σ ∈ Sn be a random permutation of the elements of N and
consider the random variable

X = |{i : {σ(1), σ(2), ...σ(i)} ∈ F}|

What is X?
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Question 3

Let us set F = {{2}, {1, 3}}.
For σ = {2, 3, 1}, X = 1. ∵ {2} ∈ F .
For σ = {3, 2, 1}, X = 0. ∵ None of {3}, {3, 2} ,{3, 2, 1} are in F .
For σ = {3, 1, 2}, X = 1. ∵ {1, 3} ∈ F .
Try to find the relation between X and F .
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Question 3

[Hint]: You may also try this. F can be partitioned into n parts
according to the size of subsets, like ki denotes a size-i set.
Therefore, |F | = k1 + k2 + ... + kn.
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Question 4

[Question 4]: Consider a graph in Gn,p, with p = 1/n. Let X be
the number of triangles in the graph, where a triangle is a clique
with three edges. Show that

Pr(X ≥ 1) ≤ 1/6

and that
lim

n→∞Pr(X ≥ 1) ≥ 1/7
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Question 4

[Hint]: Conditional expectation inequality.
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Thank you


