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I—C}uestion 1

[Question 1]:(10%) A fixed point of a permutation

7 : [1,n] — [1, n] is a value for which m(x) = x. Find the variance
in the number of fixed points of a permutation chosen uniformly at
random from all permutations.
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[Solution]: Let X; be an indicator such that X; =1 if w(i) = /.
Then, Y71 Xi is the number of fixed points.

Var[X] = E[X? — (B[X])?
= Y EX+ Y EXX] — (B[X])?
i=1 i#J
Since B[X?] = Pr(X? =1) = L and

E[XiX] = Pr(XiX;j=1)
= Pr(Xi=1)Pr(X;=1|Xi=1)

we get
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[Question 2]: Recall that the covariance of random variables X and
Y is:

Cov[X, Y] = E[(X — EIX])(Y — E[Y])].
We have seen that if X and Y are independent, then the
covariance is 0. Interestingly, if X and Y are not independent, the
covariance may still be 0.
(15%) Construct an example where X and Y are not independent,
yet Cov[X, Y] =0.
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[Solution]: Let the sample space be {—1,0,1}, with each outcome
having the same probability to occur. Let X denote the outcome
and let Y = X2. We know that Pr(X =0NY = 0) = 1/3 and
Pr(X = 0)Pr(Y = 0) = 1/9 so that X and Y are not independent.
However,

Cov[X, Y] = E[(X - E[X])(Y —E[Y])]
(=11 = E[Y]) + (0)(0 - E[Y]) + (1)(1 - E[Y]))

O wlr
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[Question 3]:

The weak law of large numbers state that, if X1, X5, X3, ... are
independent and identically distributed random variables with finite
mean g and finite standard deviation o, then for any constant

€ > 0 we have

[im Pr(
n—o0

(15%) Use Chebyshev's inequality to prove the weak law of large
numbers.

n

X1+ Xo+ Xz + ... + X,
1+ X0+ X3+ ..+ —u‘>e>:0
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[Solution]:

X1+ Xo + Xz + ... + X,
Pr(‘ 1+ 2+n3+ + _M‘>€>

= Pr(| X1+ Xo+ X3+ ... + X, — nu| > ne)
By Chebyshev's inequality:

Pr(| Xy + Xo + Xz + ... + X, — np| > ne)
Var[X; + Xo + X3 + ... + X;]

<

B (ne)?

_ XVar[X]]  no?  o?
o ne2  n2e2  ne?

lim Pr
n—oo

X1+ Xo+ X3+ ...+ X,
(e,
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[Question 4]: Suppose you are given a biased coin that has
Pr(head) = p. Also, suppose that we know p > a, for some fixed
a. Now, consider flipping the coin n times and let ny be the
number of times a head comes up. Naturally, we would estimate p
by the value p = ny/n.

1. Show that for any € € (0, 1),

_ nae —nae2
Pr(|p — p| > ep) < exp ( n2ae > + exp ( n3a€ >
2. Show that for any € € (0, 1), if

3In(2/9
RELLCT)
ae

)

then
Pr(|p —p| > ep) < 4.
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[Solution]: (1)

Pr(|p — Bl > ep)
= Pr(np < np —epn) + Pr(np > np + epn)
Pr(X < E[X](1 —¢)) + Pr(X > E[X](1 + ¢€))
< e—npe2/2 + e—npe2/3

< e—nae2/2+e—na62/3
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[Solution]: (2)

31n(2/6)

ac?
nae®/3 > In(2/9)
In(6/2) > —nae?/3
5/2 > e—naez/?:
5> e—nae2/3 + e—naez/2

n>

L

6 > Pr(|p — p| > ep)



Randomized algorithm
I—Solution to Assignment 2
I—Question 5

[Question 5]:(20%) Let Xi, Xz, ..., X, be independent Poisson trials
such that Pr(X;) = p;. Let X =37 ; Xj and = E[X]. During
the class, we have learnt that for any § > 0,

e’ a
Pr(X > (1+6)u) < (m)

In fact, the above inequality holds for the weighted sum of Poisson
trials. Precisely, let a1, ..., a, be real numbers in [0,1]. Let
W =37 ,aX;and v = E[W]. Then, for any § > 0,

ed v
> -
Pr(W > (1+d)v) < <(1 n 5)(1+6)>
1. Show that the above bound is correct.

2. Prove a similar bound for the probability Pr(W < (1 —¢)v)
forany 0 <9 < 1.
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[Solution]: (1) Since W = X7_,a;X;, we have
v =E[W]=YL,aE[X] =¥,aipi
For any i,
E[efX] = pie® + (1 — p;) = 1 + pj(e® — 1) < ePi(¢™~D)
Claim 1. For any x € [0,1], e — 1 < x(e! — 1)

f(x)=x(ef —1)—e™* +1
= x) = (e' = 1) — te™
= f'(x) =0 (when x = x* = (In(e* — 1) — Int)/t)
= f'(x)=—t?e™ <0

F(
F(

In other words, for x € [0,1], f(x) achieves minimum value either
at f(0) or f(1). So f(x) > min{f(0),f(1)} =0 for all x € [0, 1].
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[Solution]: Hence,

X (etaj _ ot
E[eeta,X,] < ep,(e 1) < ea,pl(et 1)7

By the independence of X;'s and property of MGF,
tW] HE[etaX] < HE[e ipi(e —1 ey(ef_l)

For any t > 0, we have

Elet"] ev(e'-1)
o tW t(149)v
Pr(W > (14 8)v) = Pr(e™ > &) < et(1t0)y = gt(1+o)w

Then, for any § > 0, we can set t = In(1 + ) > 0 and obtain:

6‘6 v
Pr(W > (1 + 0)v) < (m>
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[Solution]: (2) For any t < 0, we have

<

<

Pr(W < (1-9d)w
Pr(etW > et(l—é)l/)
E[etW]

et(1=d)v

e,y(et—l)

et(1=d)v

Then, for any 0 < § < 1, we can set t = In(1 — §) < 0 and obtain:

Pr(W < (1-d)v) < (%)

(1-9)
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[Question 6]:(30%) Consider a collection X3, Xa, ..., X, of n
independent geometric random variables with parameter 1/2. Let
X=>",Xiand0<d <1

1. By applying Chernoff bound to a sequence of (1 + §)(2n) fair
coin tosses, show that

—nd?

Pr(X > (14 6)(2n)) < exp (M)
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[Solution]:(1)

X; . a sequence of coin flips until the first heads comes.

> X; : a sequence of coin flips until we see the n-th head.

X > (14 0)2n : the n-th head does not occur among the first

(1 + 6)2n coin flips.

Let Y be the random variable giving the number of heads among
the first (1 + §)2n coin flips. Then we have

Pr(X > (14 6)2n) = Pr(Y < n)
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Noting that E[Y] = (1 + 0)n, we have
Pr(X > (1+46)2n) = Pr(Y <n)
)

< exp (—(1 +8)n- ﬁ)

- (z(;ifé))
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2. Derive a Chernoff bound on Pr(X > (1 + §)(2n)) using the
moment generating function for geometric random variables as
follows:

(i) Show that for ef < 2,

t

e
Ble] = .
¢ 2—¢t

(ii) Show that for t € (0,In2),

1
‘ (2 _ et)et(1+26)

is minimized when t = In <1 + ﬁ) .

(iif) Show that

Pr(X > (146)(2n)) < ((1 - %) (1 + %)1%) -
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[Solution]:(2-i)

Recall that et < 2. Then we have:

: 1
E[etX'] Eet‘i‘ZeZt‘i‘gest‘i‘

et ¥
= Y, _
(9
B et/2
1—et)2

et

T 2t
(2-ii)
Use differentiation with

respect to t.

<
V)

9]
¢
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[Solution]:(2-iii) Apply Markov inequality,
Pr(X > (1+6)2n) = Pr(exp(tX) > exp(t(1 + 6)2n))
Elexp(tX)]
exp(t(1 + §)2n)
[T Efexp(tX))]
exp(t(1 + §)2n)

Combine former results and apply t = In(1 + %),

[T E[exp(tX;)]
exp(t(1 + 0)2n)

etn

(2 _ et)et(1+5)2n

(-5

Pr(X > (1+ 6)2n)

IN
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3. It is known that when § is small, there exists € > 0 such that

5 5 O\ (1+9)/s .
1— —— - 14+ —— —€
1+5>e ) <+1+5> >e T,

(1+26)5

2
146 > 0%

and
Show that in this case, the bound in 6(b)-(iii) becomes
Pr(X > (1+6)(2n)) < exp (—n(1 —€)6* —¢) .

Conclude that when § is small enough such that € is arbitrarily close
to 0, the above bound is tighter than the bound obtained in 6(a).
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[Solution]:(3) By substitution

((1-725) (141

1+9

. m) 1+25> -n
(exp (—6 + (1 =€)

IN

2

)
exp (—n((1 — €)6° —¢))
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