Randomized algorithm

Tutorial 3

Joyce

2009-11-10
Solution to Assignment 2

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Solution to Assignment 2
A fixed point of a permutation \(\pi : [1, n] \rightarrow [1, n] \) is a value for which \(\pi(x) = x \). Find the variance in the number of fixed points of a permutation chosen uniformly at random from all permutations.
[Solution]: Let X_i be an indicator such that $X_i = 1$ if $\pi(i) = i$. Then, $\sum_{i=1}^{n} X_i$ is the number of fixed points.

$$\text{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$= \sum_{i=1}^{n} \mathbb{E}[X_i^2] + \sum_{i \neq j} \mathbb{E}[X_iX_j] - (\mathbb{E}[X])^2$$

Since $\mathbb{E}[X_i^2] = \Pr(X_i^2 = 1) = \frac{1}{n}$ and

$$\mathbb{E}[X_iX_j] = \Pr(X_iX_j = 1)$$

$$= \Pr(X_i = 1)\Pr(X_j = 1 \mid X_i = 1)$$

$$= \frac{1}{n(n-1)},$$

we get

$$\text{Var}[X] = n \times \frac{1}{n} + n(n-1) \times \frac{1}{n(n-1)} - 1 = 1.$$
[Question 2]: Recall that the covariance of random variables X and Y is:

$$\text{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

We have seen that if X and Y are independent, then the covariance is 0. Interestingly, if X and Y are not independent, the covariance may still be 0.

(15%) Construct an example where X and Y are not independent, yet $\text{Cov}[X, Y] = 0.$
[Solution]: Let the sample space be \{-1, 0, 1\}, with each outcome having the same probability to occur. Let \(X \) denote the outcome and let \(Y = X^2 \). We know that \(\Pr(X = 0 \cap Y = 0) = 1/3 \) and \(\Pr(X = 0)\Pr(Y = 0) = 1/9 \) so that \(X \) and \(Y \) are not independent. However,

\[
\text{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]
\]
\[
= \frac{1}{3}((-1)(1 - \mathbb{E}[Y]) + (0)(0 - \mathbb{E}[Y]) + (1)(1 - \mathbb{E}[Y]))
\]
\[
= 0.
\]
[Question 3]:
The weak law of large numbers state that, if X_1, X_2, X_3, \ldots are independent and identically distributed random variables with finite mean μ and finite standard deviation σ, then for any constant $\epsilon > 0$ we have

$$\lim_{n \to \infty} \Pr \left(\left| \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n} - \mu \right| > \epsilon \right) = 0$$

(15%) Use Chebyshev’s inequality to prove the weak law of large numbers.
[Solution]:

\[
\Pr \left(\left| \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n} - \mu \right| > \epsilon \right)
\]

\[
= \Pr \left(|X_1 + X_2 + X_3 + \ldots + X_n - n\mu| > n\epsilon \right)
\]

By Chebyshev's inequality:

\[
\Pr \left(|X_1 + X_2 + X_3 + \ldots + X_n - n\mu| > n\epsilon \right) \leq \frac{\text{Var}[X_1 + X_2 + X_3 + \ldots + X_n]}{(n\epsilon)^2}
\]

\[
= \frac{\Sigma \text{Var}[X_i]}{n^2\epsilon^2} = \frac{n\sigma^2}{n^2\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}
\]

\[
\therefore \lim_{n \to \infty} \Pr \left(\left| \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n} - \mu \right| > \epsilon \right) = 0
\]
[Question 4]: Suppose you are given a biased coin that has \(\Pr(\text{head}) = p \). Also, suppose that we know \(p \geq a \), for some fixed \(a \). Now, consider flipping the coin \(n \) times and let \(n_H \) be the number of times a head comes up. Naturally, we would estimate \(p \) by the value \(\tilde{p} = n_H / n \).

1. Show that for any \(\epsilon \in (0, 1) \),

\[
\Pr\left(|p - \tilde{p}| > \epsilon p \right) < \exp\left(-\frac{na\epsilon^2}{2} \right) + \exp\left(-\frac{na\epsilon^2}{3} \right)
\]

2. Show that for any \(\epsilon \in (0, 1) \), if

\[
n > \frac{3 \ln(2/\delta)}{a\epsilon^2},
\]

then

\[
\Pr\left(|p - \tilde{p}| > \epsilon p \right) < \delta.
\]
[Solution]: (1)

\[\Pr(|p - \tilde{p}| > \epsilon p) \]
\[= \Pr(n\tilde{p} < np - \epsilon pn) + \Pr(n\tilde{p} > np + \epsilon pn) \]
\[= \Pr(X < E[X](1 - \epsilon)) + \Pr(X > E[X](1 + \epsilon)) \]
\[< e^{-np\epsilon^2/2} + e^{-np\epsilon^2/3} \]
\[< e^{-n\epsilon^2/2} + e^{-n\epsilon^2/3} \]
[Solution]: (2)

\[n > \frac{3 \ln(2/\delta)}{a\epsilon^2} \]

\[\Rightarrow na\epsilon^2/3 > \ln(2/\delta) \]

\[\Rightarrow \ln(\delta/2) > -na\epsilon^2/3 \]

\[\Rightarrow \delta/2 > e^{-na\epsilon^2/3} \]

\[\Rightarrow \delta > e^{-na\epsilon^2/3} + e^{-na\epsilon^2/2} \]

\[\Rightarrow \delta > \Pr(|p - \tilde{p}| > \epsilon p) \]
[Question 5]: (20%) Let X_1, X_2, \ldots, X_n be independent Poisson trials such that $\Pr(X_i) = p_i$. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = \mathbb{E}[X]$. During the class, we have learnt that for any $\delta > 0$,

$$\Pr(X \geq (1 + \delta)\mu) < \left(\frac{e^\delta}{(1 + \delta)(1+\delta)} \right)^\mu$$

In fact, the above inequality holds for the weighted sum of Poisson trials. Precisely, let a_1, \ldots, a_n be real numbers in $[0, 1]$. Let $W = \sum_{i=1}^{n} a_iX_i$ and $\nu = \mathbb{E}[W]$. Then, for any $\delta > 0$,

$$\Pr(W \geq (1 + \delta)\nu) < \left(\frac{e^\delta}{(1 + \delta)(1+\delta)} \right)^\nu$$

1. Show that the above bound is correct.

2. Prove a similar bound for the probability $\Pr(W \leq (1 - \delta)\nu)$ for any $0 < \delta < 1$.
[Solution]: (1) Since \(W = \sum_{i=1}^{n} a_i X_i \), we have

\[
\nu = \mathbb{E}[W] = \sum_{i=1}^{n} a_i \mathbb{E}[X_i] = \sum_{i=1}^{n} a_i p_i
\]

For any \(i \),

\[
\mathbb{E}[e^{ta_i X_i}] = p_i e^{ta_i} + (1 - p_i) = 1 + p_i(e^{ta_i} - 1) \leq e^{p_i(e^{ta_i} - 1)}
\]

Claim 1. For any \(x \in [0, 1] \), \(e^{tx} - 1 \leq x(e^t - 1) \)

\[
f(x) = x(e^t - 1) - e^{tx} + 1
\]

\[
\Rightarrow f'(x) = (e^t - 1) - te^{tx}
\]

\[
\Rightarrow f'(x) = 0 \text{ (when } x = x^* = (\ln(e^t - 1) - \ln t)/t)\]

\[
\Rightarrow f''(x) = -t^2 e^{tx} \leq 0
\]

In other words, for \(x \in [0, 1] \), \(f(x) \) achieves minimum value either at \(f(0) \) or \(f(1) \). So \(f(x) \geq \min\{f(0), f(1)\} = 0 \) for all \(x \in [0, 1] \).
[Solution]: Hence,

\[E[e^{\eta_i X_i}] \leq e^{p_i(e^{\eta_i} - 1)} \leq e^{a_i p_i(e^t - 1)}, \]

By the independence of \(X_i \)'s and property of MGF,

\[E[e^{tW}] = \prod_{i=1}^{n} E[e^{\eta_i X_i}] \leq \prod_{i=1}^{n} E[e^{a_i p_i(e^t - 1)}] = e^{\nu(e^t - 1)} \]

For any \(t > 0 \), we have

\[\Pr(W \geq (1 + \delta)\nu) = \Pr(e^{tW} \geq e^{t(1+\delta)\nu}) = \frac{E[e^{tW}]}{e^{t(1+\delta)\nu}} \leq \frac{e^{\nu(e^t - 1)}}{e^{t(1+\delta)\nu}} \]

Then, for any \(\delta > 0 \), we can set \(t = \ln(1 + \delta) > 0 \) and obtain:

\[\Pr(W \geq (1 + \delta)\nu) < \left(\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right)^\nu \]
[Solution]: (2) For any $t < 0$, we have

$$
\Pr(W \leq (1 - \delta)\nu) = \Pr(e^{tW} \geq e^{t(1-\delta)\nu}) \\
\leq \frac{\mathbb{E}[e^{tW}]}{e^{t(1-\delta)\nu}} \\
\leq \frac{e^{\nu(e^t-1)}}{e^{t(1-\delta)\nu}}
$$

Then, for any $0 < \delta < 1$, we can set $t = \ln(1 - \delta) < 0$ and obtain:

$$
\Pr(W \leq (1 - \delta)\nu) < \left(\frac{e^\delta}{(1 - \delta)^{(1-\delta)}}\right)^\nu
$$
[Question 6]: (30%) Consider a collection X_1, X_2, \ldots, X_n of n independent geometric random variables with parameter $1/2$. Let $X = \sum_{i=1}^{n} X_i$ and $0 < \delta < 1$.

1. By applying Chernoff bound to a sequence of $(1 + \delta)(2n)$ fair coin tosses, show that

$$\Pr(X > (1 + \delta)(2n)) < \exp\left(\frac{-n\delta^2}{2(1 + \delta)}\right).$$
[Solution]: (1)

X_i: a sequence of coin flips until the first heads comes.

ΣX_i: a sequence of coin flips until we see the n-th head.

$X > (1 + \delta)2n$: the n-th head does not occur among the first $(1 + \delta)2n$ coin flips.

Let Y be the random variable giving the number of heads among the first $(1 + \delta)2n$ coin flips. Then we have

$\Pr(X > (1 + \delta)2n) = \Pr(Y < n)$
Noting that $E[Y] = (1 + \delta)n$, we have

$$\Pr(X > (1 + \delta)2n) = \Pr(Y < n)$$

$$= \Pr(Y < (1 - \frac{\delta}{1+\delta})(1 + \delta)n)$$

$$\leq \exp\left(\frac{- (1 + \delta)n \cdot \frac{\delta^2}{2(1 + \delta)^2}}{2(1 + \delta)} \right)$$

$$= \exp\left(\frac{n\delta^2}{2(1 + \delta)} \right)$$
2. Derive a Chernoff bound on \(\Pr(X > (1 + \delta)(2n)) \) using the moment generating function for geometric random variables as follows:

(i) Show that for \(e^t < 2 \),
\[
E \left[e^{tX_i} \right] = \frac{e^t}{2 - e^t}.
\]

(ii) Show that for \(t \in (0, \ln 2) \),
\[
\left| \frac{1}{(2 - e^t)e^{t(1+2\delta)}} \right| \text{ is minimized when } t = \ln \left(1 + \frac{\delta}{1 + \delta} \right).
\]

(iii) Show that
\[
\Pr(X > (1 + \delta)(2n)) < \left(\left(1 - \frac{\delta}{1 + \delta} \right) \left(1 + \frac{\delta}{1 + \delta} \right)^{1+2\delta} \right)^{-n}.
\]
[Solution]: (2-i)
Recall that $e^t < 2$. Then we have:

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{4}e^{2t} + \frac{1}{8}e^{3t} + ...$$

$$= \sum_{k=1}^{\infty} \left(\frac{e^t}{2} \right)^k$$

$$= \frac{e^t/2}{1 - e^t/2}$$

$$= \frac{e^t}{2 - e^t}$$

(2-ii)
Use differentiation with respect to t.
[Solution](2-iii) Apply Markov inequality,

\[\Pr(X > (1 + \delta)2n) = \Pr(\exp(tX) > \exp(t(1 + \delta)2n)) \]

\[\leq \frac{\mathbb{E}[\exp(tX)]}{\exp(t(1 + \delta)2n)} \]

\[= \frac{\prod \mathbb{E}[\exp(tX_i)]}{\exp(t(1 + \delta)2n)} \]

Combine former results and apply \(t = \ln(1 + \frac{\delta}{1 + \delta}) \),

\[\Pr(X > (1 + \delta)2n) = \frac{\prod \mathbb{E}[\exp(tX_i)]}{\exp(t(1 + \delta)2n)} \]

\[\leq \frac{e^{tn}}{(2 - e^t)e^{t(1+\delta)2n}} \]

\[= \left(\left(1 - \frac{\delta}{1 + \delta}\right) \left(1 + \frac{\delta}{1 + \delta}\right)^{1 + 2\delta}\right)^{-n} \]
3. It is known that when δ is small, there exists $\epsilon > 0$ such that

$$1 - \frac{\delta}{1 + \delta} > e^{-\epsilon}, \quad \left(1 + \frac{\delta}{1 + \delta}\right)^{(1+\delta)/\delta} > e^{1-\epsilon},$$

and

$$\frac{(1 + 2\delta)\delta}{1 + \delta} > \delta^2.$$

Show that in this case, the bound in 6(b)-(iii) becomes

$$\Pr(X > (1 + \delta)(2n)) < \exp \left(-n(1 - \epsilon)\delta^2 - \epsilon \right).$$

Conclude that when δ is small enough such that ϵ is arbitrarily close to 0, the above bound is tighter than the bound obtained in 6(a).
[Solution]: (3) By substitution

\[
\left(\left(1 - \frac{\delta}{1 + \delta} \right) \left(1 + \frac{\delta}{1 + \delta} \right)^{1+2\delta} \right)^{-n}
\]

\[
\leq \left(\exp \left(-\epsilon + (1 - \epsilon)\left(\frac{\delta^2}{1 + \delta} + \delta \right) \right) \right)^{-n}
\]

\[
\leq \exp \left(-n \left((1 - \epsilon)\delta^2 - \epsilon \right) \right)
\]