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CS5314
Randomized Algorithms

Lecture 4: Discrete Random
Variables and Expectation

(Definitions, Basics)
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•What is a random variable?
•What is expectation?
•Some useful theorems:

(1) Linearity of Expectations,
(2) Jensen’s inequality

•Binomial random variable

Objectives
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Random Variable
Definition: A random variable X on a

sample space is a function that maps
each outcome of into some real
numbers. That is, X: R.

Definition: A discrete random variable is a
random variable that takes on only finite
or countably infinite number of values.
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•Suppose that we throw two dice
•The sample space will be:

= { (1,1), (1,2), …, (6,5), (6,6) }
•Define X = sum of outcome of two dice
 X is a random variable on 

(In fact, X is also a discrete random variable)

Example
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•For a discrete random variable X and
a value a, the notation

“X = a”
denotes the set of outcomes in the
sample space such that X() = a
 “X = a”is an event

•In previous example,

“X = 10”is the event {(4,6), (5,5), (6,4)}

Discrete Random Variable
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Independent
Definition: Two random variables X and Y

are independent if and only if
Pr((X=x) \ (Y=y)) = Pr(X=x) Pr(Y=y)

for any x and y.

In other words,
the events “X=x”and “Y=y”are

independent, for any x and y.
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Independent
Definition: Random variables X1, X2, …, Xk

are mutually independent if and only if
for any subset I µ [1,k], and any values xi

Pr(\i2I Xi=xi) = i2I Pr(Xi=xi)

What does it mean ??
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Expectation
Definition: The expectation of a discrete

random variable X, denoted by E[X], is

E[X] = i i Pr(X=i)

Question:
• X = sum of outcomes of two fair dice

What is the value of E[X] ?
• How about the sum of three dice?
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Another View of Expectation

Lemma: E[X] = X() Pr()

Proof:

X=i
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co

ntr
ibute

i i Pr(X=i)

X=j
X=k

X() Pr()
co

nt
rib

ut
e

X() Pr()



10

Linearity of Expectation
Theorem: For any finite collection of

discrete random variables X1, X2, …, Xk,
each with finite expectation, we have

E[i Xi] = i E[Xi]

How to prove?
Note: Only need to prove the statement

for two random variables
(as general case follows by induction)



11

Proof: Let X and Y be two random variables

E[X+Y]

= (X()+Y()) Pr()

=X() Pr() + Y() Pr()

= E[X] + E[Y]

Linearity of Expectation
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Let X = sum of outcomes of two fair dice.
Can we compute E[X] with previous theorem?

Let Xi = the outcome of the ith dice
 X = X1 + X2

 E[X] = E[X1 + X2] = E[X1] + E[X2]
= 7/2 + 7/2 = 7

Can you compute the expectation of the
sum of outcomes of three fair dice?

Linearity of Expectation
(Example)
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Linearity of expectation does not need to
work on independent variables !

E.g., Let X = the outcome of a die throw,
Let Y = X + X2

Clearly, X and X2 are dependent
However, we can still show that

E[Y] = E[X + X2] = E[X] + E[X2]

Linearity of Expectation
(Remark)
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Linearity of Expectation [cont.]

Lemma: For any constant c and discrete
random variable X,

E[cX] = cE[X]

The lemma is true when c = 0. How about
the other cases?
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When c 0,

E[cX] = (cX()) Pr()

= c X() Pr()
= c E[X]

Proof of the Lemma
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•Which one is larger?
(E[X])2 or E[X2]

Let us consider Y = (X –E[X])2

•We notice that E[Y] ¸ 0. (why??)

•How about E[Y] in terms of (E[X])2 and
E[X2] ?

Let’s Guess
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E[Y] = E[(X –E[X])2]
= E[X2- 2X E[X] + (E[X])2]
= E[X2 ] - 2E[X E[X]] + (E[X])2 [why??]

= E[X2 ] - 2 E[X] E[X] + (E[X])2 [why??]

= E[X2 ] - (E[X])2

So, which one is larger? (E[X])2 or E[X2] ?

Let’s Guess
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•The previous result is a special case of
the Jensen’s inequality (which will be described
in a moment)

Convex Function

Definition: A function f is convex if for
any x1, x2 and any 2 [0,1],

f(x1 + (1-) x2) · f(x1) + (1-) f(x2)
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Convex Function

x1 x2

x1 + (1-)x2

f(x1 + (1-)x2)

f(x)

f(x1) +(1-)f(x2)
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Examples of convex function:
f(x) = x2, f(x) = x4, f(x) = ex

Convex Function

Fact: Suppose f is twice differentiable.
Then, f is convex  f’’(x) ¸ 0 for all x
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Jensen’s Inequality

Theorem: If f is convex, then
E[f(X)] ¸ f(E[X])

Proof: Assume f has a Taylor expansion.
Then, it is shown that for any , there
exists c such that f(x) can be written as:

f(x) = f() + f’()(x-) + f’’(c)(x-)2/2
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Jensen’s Inequality (proof)

Proof [cont.]
Thus, for convex function f, we have

f(x) ¸ f() + f’()(x-) for any x

Now, let = E[X] (so that is a constant!)

E[f(X)] ¸ E[f() + f’()(X-)]

= E[f()] + f’()(E[X]-)
= f() + f’()(0)
= f() = f(E[X])



23

Indicator Random Variable
Suppose that we run an experiment that

has only two outcomes: succeeds, or fails

Let Y be a random variable such that
•Y = 1 if the experiment succeeds, and
•Y = 0 if the experiment fails
 Y is called an indicator variable

(whose values take on either 1 or 0)

If Pr(succeeds) = p, E[Y] = p = Pr(Y = 1)
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Binomial Random Variable
Definition: A binomial random variable X

with parameters n and p, denoted by
Bin(n, p), is defined by the following
probability distribution on r = 0,1,2,…,n:

Pr(X = r) = pr (1-p)n-rCn

r

The event “X = r”represents exactly r
successes in n independent experiments,
each succeeds with probability p
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Expectation of Binomial RV

Question:
What is E[X] of the binomial random
variable X = Bin(n, p)?

Ans. np (why??)
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Expectation of Binomial RV

First Proof: (using linearity of expectation)
Let X1, X2, …, Xn be random variables with

Xi = 1 if the ith trial succeeds, and
Xi = 0 if the ith trial fails

So, X = X1 + X2 + …+ Xn

Then,
E[X] = E[X1 + X2 + …+ Xn]

= E[X1] + E[X2] + …+ E[Xn] = np
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E[X] = r=0 to n r Pr(X=r)

= r=1 to n r Pr(X=r)

= r=1 to n r C(n,r) pr (1-p)n-r

= np r=1 to n (n-1)!/((r-1)! (n-r)!) pr-1(1-p)n-r

= np k=0 to n-1 (n-1)!/(k! (n-1-k)!) pk(1-p)n-1-k

= np ( p + (1-p) )n-1

= np

Second Proof: (using definition)


