
1

CS5314
Randomized Algorithms

Lecture 3: Events and Probability
(verifying matrix multiplication,

randomized min-cut)

2

•A simple randomized algorithm to check
if we multiply two matrices correctly

•A simple randomized algorithm for
finding min-cut of a graph

•Introduce concept:
–Law of Total Probability
–Principle of Deferred Decision

Objectives

3

•Suppose our friend, John, tells us that
he has just multiplied two n £ n
matrices A and B, and obtained a
resultant n £ n matrix C

•He wants us to double-check for him
whether AB = C

•How can we help John?

Verifying Matrix Multiplication

4

•One way to do so is to multiply two
matrices A and B again, and compare the
result with C

•A simple way to multiply A and B would
take O(n3) operations
–Even if we apply the best-known matrix algorithm

[Coppersmith-Winograd 1990], we still need O(n2.376)
operations

•Can we do the checking faster?

Verifying Matrix Multiplication

5

•Pick an n-dimension vector r = (r1,r2,…,rn),
uniformly at random, from {0,1}n

–Precisely, r is a n x 1 matrix
•Compute ABr and Cr
•If ABr = Cr, we conclude AB C.
•Otherwise, we conclude AB 6C.

A Randomized Algorithm
(verifying matrix multiplication)

6

Questions
•What is the runtime of the algorithm?

Ans. O(n2) time. It is because:
–To compute ABr, we compute Br first

to get a vector r’, and then compute Ar’.
Each step thus takes O(n2) time.

–Computing Cr and the final comparison
also takes O(n2) time.

A Randomized Algorithm
(Performance Analysis)

7

Questions
•When will the algorithm make an error?

Ans. …when AB 6C, and the r we choose
satisfies ABr = Cr

•When AB 6C, can we bound Pr(ABr = Cr)?

To bound it, let D = AB –C. Then,
Pr(ABr = Cr) = Pr(Dr = 0)

A Randomized Algorithm
(Performance Analysis)

8

•Next, since D 0, there must be some
entry in D, say dxy, is not zero

A Randomized Algorithm
(Performance Analysis)

…

…



dnn…dn2dn1

dxndxy…dx2dx1



d1n…d12d11
non-zero

9

•Then, when Dr=0 ,

 j=1,2,…,n dxj rj = 0

 Equivalently, ry = -j y dxjrj / dxy

•Thus, [why?]
Pr(Dr = 0) · Pr(ry= -j y dxjrj / dxy)

A Randomized Algorithm
(Performance Analysis)

10

A useful lemma
Lemma: To obtain r = (r1,r2,…,rn),
choosing r uniformly at random from {0,1}n

is equivalent to
choosing each ri independently and

uniformly at random from {0,1}

Proof: If each ri is chosen independently
and uniformly at random, then each of
the 2n possible vectors r is chosen with
probability 1/2n

11

Law of Total Probability
Theorem: Let E1, E2, …, En be mutually

disjoint events in the sample space , and
let i=1,2,…,n Ei = .
(I.e., E1, E2, …, En forms a partition of)

Then, for any event B,
 Pr(B) = i=1,2,…,n Pr(B \ Ei)

 = i=1,2,…,n Pr(B | Ei) Pr(Ei)

12

Pr(ABr = Cr) = Pr(Dr = 0)
· Pr(ry= -j y dxjrj/dxy)

= S Pr((ry= -j y dxj rj/ dxy)\ S),
where S denotes a particular choice for (r1,r2,…,rn)
with ry missing  the summation is over all 2n-1 choices

= S Pr((ry= -j y dxj rj/ dxy) |S) Pr(S)

· S (1/2) Pr(S) [why??]

= 1/2.

Back to the Analysis…

13

Conclusion:
•When AB 6C, Pr(ABr = Cr) · 1/2
 algorithm is wrong with prob · 1/2

 correct in at least 50% of time

•By repeat running k times, probability
that the result is correct ¸ 1 –1/2k

Back to the Analysis…

14

•In previous analysis, when we compute

Pr(ry= -j y dxjrj/dxy),
we did not consider each choice of r, and
sum up by
r 2 {0,1}n Pr((ry=-j y dxj rj/dxy) | r) Pr(r)

•Instead, we fix only some part of r at
first, and fix some part (ry) later

•Known as: Principle of Deferred Decision

Back to the Analysis…(Remark)

15

Let G be an undirected graph.
•A cut in G is a set of edges such that by

removing them, G is broken into more
than one connected components

Min-Cut Problem

after removing a cutbefre removing a cut

16

•Min-Cut Problem: To find a cut for G
whose size (number of edges) is minimum

•Useful in studying network reliability
•Let n = number of vertices in G
• m = number of edges in G
•Best deterministic (i.e., not randomized)

algorithm for Min-Cut runs in:
O(nm + n2 log n) time

Min-Cut Problem

17

•Set G’to be G
•While G’has more than 2 vertices

1. Pick an edge e from G’, uniformly at
random, among all edges in G’

2. Contract e (and remove self-loops) to
obtain a new graph

3. Set G’to be this new graph
•Output the set of edges in G’

// Boundary Case: Return { } if input G is not connected

Randomized Min-Cut

18

Example Run
Step 2. Contracting gray edgeStep 1. The original G

Step 4. Contracting blue edgeStep 3. Contracting red edge

19

Example Run

 The remaining edges form a cut in G

Step 5. Contracting black edge

The original G G - remaining edges 
more than one component

20

1. Each edge contraction removes 1 vertex
2. Edges in final output is a cut of G
3. Not every final output is a min-cut
4. Suppose C is one of the min-cut of G.

If every edge of C is not contracted,
then the final output contains only
edges in C [why??]

 By 2 and 4, final output must be C

Randomized Min-Cut (Facts)

21

Suppose C a min-cut of G. Let k be its size
Then,

Pr(the algorithm is correct)
¸ Pr(C is output in the end)

= Pr(all edges of C are not contracted)

Question: what is the above probability?

Randomized Min-Cut
(Performance Analysis)

22

Let Ei be the event that the edge
contracted at the ith step is not from C

Then, Pr(all edges of C are not contracted)

= Pr(i=1,2,…,n-2 Ei) [why n-2?]

= Pr(E1) £ Pr(E2 | E1) £ Pr(E3 | E1\ E2) £
…£ Pr(En-2 | i=1,2,…,n-3 Ei)

Randomized Min-Cut
(Performance Analysis)

23

Key Observation:
At the beginning of each step, the
degree of any node is at least k [why??]

 How many edges in G’before ith step?
[I.e., when i-1 vertices are already removed]

Randomized Min-Cut
(Performance Analysis)

24

Thus,
Pr(E1) ¸ 1 – = 1 –

Pr(E2 | E1) ¸ 1 – = 1 –

Pr(E3 | E1\ E2) ¸ 1 – = 1 –

 

Pr(En-2 | i=1,2,…,n-3 Ei) ¸ 1 – = 1/3

Randomized Min-Cut
(Performance Analysis)

2/nk
k

n
2

2/)1(kn
k

 1
2
n

2/)2(kn
k

 2
2
n

2/3k
k

25

Then,
Pr(all edges of C are not contracted)

= Pr(i=1,2,…,n-2 Ei)

¸ (1- 2/n)(1- 2/(n-1))(1- 2/(n-2)) …(1/3)

=

=

Randomized Min-Cut
(Performance Analysis)

3
1

4
2

5
3

6
4

3
5

2
4

1
32  






 n

n
n
n

n
n

n
n

)1(
2
nn

26

Conclusion:

• Algorithm is correct with prob ¸

Randomized Min-Cut
(Performance Analysis)

)1(
2
nn

• Repeat running t times, and then choose
the cut with the smallest size will
improve correctness probability

• What will be the modified probability?

27

• After t runs, the algorithm is wrong
with prob at most (1 -)t

Randomized Min-Cut
(Repeated Runs)

)1(
2
nn

• Setting t = n(n-1) loge n, the algorithm is
wrong after t runs with prob · 1/n2

• Using the fact 1 –x · e-x [for any x],
(1 -)t· e-

)1(
2
nn

)1(
2
nn
t

28

Conclusion:
• After n(n-1)loge n runs, our algorithm

returns min-cut with high probability
(This means: At least 1- 1/nc for some constant c)

• With careful implementation, each run
takes O(n2) time
 For n(n-1)loge n runs = O(n4log n) time
– Not so good…Deterministic algorithm only

needs O(nm + n2 log n) time !!!

Randomized Min-Cut
(Repeated Runs)

29

Observation: We will wrongly contract an
edge of C more easily at later steps

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

2
• What if we just run randomized min-cut

until G’contains n/ vertices?
 prob that no edge of C is contracted

¸ , which is very close

to 1/2 [for simplicity, we assume this ¸1/2]
)1(

)12/)(2/(



nn
nn

30

• We use
Contract(X)

to denote the graph after running
randomized min-cut on X until it
contains |X|/ vertices

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

2

31

The modified algorithm is as follows:

NewCut(G) {
if (|G| == 2) return edges of G;
G1 = Contract(G), G2 = Contract(G);
Y1 = NewCut(G1), Y2 = NewCut(G2);
return min { Y1, Y2 }

}
// Remark: G1 and G2 are normally not the same
// since output of Contract() is random

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

32

Questions:
• What is the runtime of Karger and

Stein’s algorithm?
Ans. T(n) = O(n2) + 2T(n/)
 By Master Theorem, T(n) = O(n2log n)

• When will NewCut(G) return min-cut C?
Ans. …when either (i) G1 contains C and
NewCut(G1) returns C, or (ii) G2 contains
C and NewCut(G2) returns C

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

2

33

• We now express the probability that
NewCut(G) returns C, in terms of n

• Let f(x) denote the minimum probability
that C is returned if NewCut() is run on
any graph of x vertices (produced by some
edge contractions from G) with C = one of its
min-cut

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

34

Thus,
Pr(G1 contains C and NewCut(G1) returns C)
= Pr(NewCut(G1) returns C | G1 contains C)

£ Pr(G1 contains C)

¸ f(n/) (1/2)

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

2

2

So, [why?]

Pr(NewCut(G) not return C) · (1-½f(n/))2

35

In other words, [why?]
f(n) ¸ 1 - (1-½f(n/))2

In general, we have
f(x) ¸ 1 - (1-½f(x/))2 for x ¸ 3

f(2) = 1
Solving the recurrence, we get [trust me]

f(n) ¸ 1/log n

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

2

2

36

• Thus, new algorithm is correct with
prob at least 1/log n
 Much better than just 2/n(n-1)

• Repeat for 2(log n)(loge n) times, prob
of not returning C is at most
(1 –1/log n)2(log n)(loge n)· e-2loge n = 1/n2

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

37

Conclusion:
• New algorithm returns min-cut after

2(log n)(loge n) runs, with high probability
• For 2(log n)(loge n) runs = O(n2log3 n) time

– Better than deterministic algorithm [which
needs O(nm + n2 log n) time] …when the graph is
dense (i.e., when m = (n2))

Randomized Min-Cut
(Karger and Stein’s Speed Up [1993])

38

A very useful inequality

Lemma: 1 + x · ex (for any x)

1st Proof:
Study by cases (x 0, x -1, others)
Use the fact: ex = 1 + x + x2/2! + x3/3! + …

2nd Proof:
Compare the curve: y = 1+x and y = ex

Corollary: 1 - x · e-x (for any x)

39

An interesting application:
The Birthday Pairing Problem

Let’s say we have a class of N people, born
in the year of 1989.

With no ideas about their birthdays, we
assume each person chooses his birthday
uniformly at random from the 365 days

What is the probability that we can find
two persons born on the same day?

40

An interesting application:
The Birthday Pairing Problem

•If N = 50, will the previous probability be
greater than 0.5?
Ans. Greater than 0.965

•If we want the previous probability to be
greater than 0.5, how large should N be?
Ans. N = 23 will be sufficient…

