CSbH314
Randomized Algorithms

Lecture 23: Markov Chains
(Gambler's Ruin, Random Walks)



Objectives

- Discuss Gambler's ruin

- A study of the game between two gamblers
until one is ruined (no money left)

» Introduce stationary distribution

- and a sufficient condition when a Markov
chain has stationary distribution

* Analyze random walks on graph



The Game

Consider two players, one have L, dollars,
and the other has L, dollars. Player 1 will
continue to throw a fair coin, such that

** if head comes up, he wins one dollar
** if tail comes up, he loses one dollar

Suppose the game is played until one
player goes bankrupt. What is the
chances that Player 1 survives?



The Markov Chain Model

The previous game can be modeled by the
following Markov chain:

Q%



The Markov Chain Model

Initially, the chain is at state O

Let P; (") denote the probability that after 1
steps, the chain is at state |

Also, let q be the probability that the game
ends with Player 1 winning L, dollars

We can see that

ims, P; =0, for j=-L,, L,
M5, P;M=1-q,  forj=-L,
ims. P =q, for j=L,




The Analysis

Now, let W, to be the money Player 1 has
won after t steps

By linearity of expectation,
E[W;]=0

On the other hand,
E[W,]= 2 jP,®



The Analysis (2)

By taking limits, we have
0= lim,, . E[W,]
= limy5, 2 j P;®
=(-L) (1-q)+0+0+ .. +0+(L,)q

Re-arranging terms, we obtain
q= L/ (L)



Stationary Distribution

Consider the following Markov chain:

Let p;(t) = probability that
the chain is at state |
at time t, and let

0 {p(1)) = (po(T), pa(t), pa(1))

Suppose that
(p(t))=(0.4,0.2,0.4)

Question: In this case, what will be (p(t+1))?




Stationary Distribution (2)

After some calculation, we get
(p(t+1)) = (0.4,0.2, 0.4)
which is the same as (p(1)) !

We can see that in the previous example,
the Markov chain has entered an
“equilibrium” condition at time T, where

(p(n)) remains (0.4, 0.2,0.4) foralln >t

=> this probability distribution is called a
stationary distribution
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Stationary Distribution (3)

Precisely, let P be the transition matrix
of a Markov chain

Definition: If (p(t+1)) = (p(1)) P = (p(1)), then
(p(1)) is a stationary distribution
of the Markov chain

Question: How many stationary distribution
can a Markov chain have? Can it be more
than one? Can it be none?
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Stationary Distribution (4)

Ans. Can be more than one. For example,

Q%

In this case, both (1,0,0,..,0) and (0,0,...,0,1)
are stationary distribution
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Stationary Distribution (5)

Ans. Can be none. For example,

Here, no stationary distribution exists

Question: Are there some conditions that
can tell if a Markov chain has a unique
stationary distribution?
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Special Markov Chains

Definition: A Markov chain is irreducible if
its directed representation is a strongly
connected component. That is, every
state j can reach any state k

For example:
o W
0o5——(2) )10

irreducible not irreducible
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Special Markov Chains (2)

Definition: A Markov chain is periodic if
there exists some state j and some
infeger d > 1 such that:

Pr(Xs = I Xy =) =0
unless s is divisible by d

In other words, once we start at state j, we can only return
to j after a multiple of d steps

If a Markov chain is not periodic, then it
is called aperiodic
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Special Markov Chains (3)
For example,

0.3

© ( L
0.7 e

aperiodic periodic

1.0
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Sufficient Conditions

A simplified version of an important result
of Ch. 7 is stated as follows:

Theorem: Suppose a Markov chain is finite
with states 0,1,...n. If it is irreducible
and aperiodic, then

1. The chain has a unique stationary
distribution (n) = (ny, 7y, ..., 7,);
2. . = l/hk Ko where

h, = expected # of steps to return to
state k, when starting at state k
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Random Walk

Let G be a finite, undirected, and
connected graph

Let D(G) be a directed graph formed by
replacing each undirected edge {u,v} of G
by two directed edges (u,v) and (v,u)

Definition: A random walk on G is a Markov
chain whose directed representation is
D(6), and for each edge (u,v), the
transition probability is 1/deg(u)
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Random Walk (2)

For example, s

(0) 1 (1)

1/2 1/2

G2 W

Representation for

random walk on G
18



Random Walk (3)

Since G is connected, it is easy to check
that D(G) is strongly connected .. [why?]

= Random walk on G is irreducible

The lemma below gives a simple criterion
for a random walk on G to be aperiodic

Lemma: A random walk on G is aperiodic if
and only if G is not bipartite

How to prove??
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(=) If G is bipartite, all cycles have even
number of edges. Then, if we start at
any vertex in D(G), it can only come back
to itself in even steps
So0,d = 2, and the chain is periodic

(€) If G is not bipartite, there exists an
odd-length cycle C. Let w be any vertex
in C. Then, for any vertex uin D(6), it
can come back to itself in 2 steps (via (u,v)

then (v,u) for some v), and also in odd sTeps (via
a path from u to w, then C, then a path from w to u).

So,d =1, and the chain is aperiodic 20



Random Walk (4)

Then, we have the following theorem:

Lemma: If G =(V,E) is not bipartite, the
random walk on G has a unique stationary
distribution (r). Moreover, for vertex v,
the corresponding probability in (r) is:

n, = deg(v) / (2|E|)

Proof: The first statement follows
immediately since the random walk is
finite, irreducible, and aperiodic ...
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Proof (cont)
For the second statement, we first see that

26T, = 2y deg(v) / (2|E]) = 1
so that (n) is a valid probability distribution

Next, let P be the transition matrix of the
random walk. Let N(v) be the set of the
neighbors of v (so IN(v)| = deg(v))

Then, the vh entry of (n) P is:
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Proof (cont)
ZUEG U P
ZUEN(V) i, u v Zu Z N(v) U O 2

= ZueN(v) (deg(u)/(Z | ED) (l/deg(u))
= deg(v) / (2|E]|) = =,

ueN(v) u uv

= (n) = (n) P, so (n) is a (unique) stationary
distribution of the random walk
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Random Walk (5)

From now on, we assume G is not bipartite.

Recall that h, , = expected number of steps
to reach u, starting from v

Then we have the following corollary:

Corollary: In the random walk on G,

for any vertex v,
h,, = 1/n, = 2|E| / deg(v)

Next, we give a lemma for bounding h,,
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Random Walk (6)
Lemma: For any edge (u,v) € E,

h,, < 2|E]

Proof: Let N(v) be the neighbor-set of v.
Then, h, , can be expressed by:

(l/deg(v)) Z:ueN(V) (1 + hu,v)
Then, by previous corollary, we see that

2|EI - 2uel\l(v) (1 + hu,v)
= Lemma thus follows 2



Cover Time

For a graph G, we denote cover(v) to be
the expected number of steps to visit all
nodes in G by a random walk, starting at v

Definition: The cover time of G is defined
as max,. { cover(v) }

Consider any spanning tree T of G

Let p = an Eulerian tour that traverses
each edge of T once in each direction
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Cover Time (2)

Let vg, Vi, ... Voy|-3. V2|v|-2 D€ the sequence
of vertices in p (Note: v,y.2= Vo)

Now, based on p, consider a tour on G
that starts at v,, then by random walk
reaches v,, then by random walk reaches
v,, and so on, and it finally reaches v,

Because in this tour, we cannot stop even
if we have visited every vertices of G
> the expected time for this tour must
be at least cover(v,)
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Cover Time (3)

In fact, we can start from any vertex of
p and obtain similar arguments

=> The expected time for this tour must
be at least the cover time of G

For the expected time for the tour, it is:

Zk=O’r02|VI 3 vklvk+1<(2|V| 2) Z‘El <4|VI|EI

This gives the following theorem:
Theorem: The cover time of G < 4|V||E|
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ST Connectivity

Given an undirected graph G = (V,E) and
two vertices s and t, we want to know if s
and t are connected

The following succeeds with prob > 1/2

Step 1: Start a random walk on G from s

Step 2: If the walk reaches tin 4|V|3 steps,
return true. Otherwise, return false

Proof: If s and t are connected, expected time to reach t
from s is at most 2|V|3. Then apply Markov Inequality
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ST Connectivity (2)

»  This algorithm is very space-efficient!

*  Apart for the input G (which is read-only
here) and assume that we can choose a
random neighbor to visit at each step,
the algorithm just needs O(log |V|) bits
to store the current positionl!!

Remark 1: Recently, Reingold (2006) shows that even
without the random bits, ST connectivity in undirected
graph can be done in O(log |V|) bits

Remark 2: If graph is directed, it becomes the hardest
problem solvable by an NTM using O(log |V|) bits
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