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CS5314
Randomized Algorithms

Lecture 23: Markov Chains
(Gambler’s Ruin, Random Walks)
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•Discuss Gambler’s ruin
–A study of the game between two gamblers

until one is ruined (no money left)
•Introduce stationary distribution

–and a sufficient condition when a Markov
chain has stationary distribution

•Analyze random walks on graph

Objectives
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• Consider two players, one have L1 dollars,
and the other has L2 dollars. Player 1 will
continue to throw a fair coin, such that
** if head comes up, he wins one dollar
** if tail comes up, he loses one dollar

• Suppose the game is played until one
player goes bankrupt. What is the
chances that Player 1 survives?

The Game
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• The previous game can be modeled by the
following Markov chain:

The Markov Chain Model
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Initially, the chain is at state 0
Let Pj

(t) denote the probability that after t
steps, the chain is at state j

Also, let q be the probability that the game
ends with Player 1 winning L2 dollars

We can see that
limt1 Pj

(t) = 0, for j –L1, L2

limt1 Pj
(t) = 1-q, for j –L1

limt1 Pj
(t) = q, for j L2

The Markov Chain Model
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• Now, let Wt to be the money Player 1 has
won after t steps

• By linearity of expectation,

E[Wt] = 0

• On the other hand,

E[Wt] = j Pj
(t)

The Analysis
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• By taking limits, we have
0 = limt1 E[Wt]

= limt1j Pj
(t)

= (-L1) (1-q) + 0 + 0 + …+ 0 + (L2) q

• Re-arranging terms, we obtain
q = L1 / (L1+L2)

The Analysis (2)
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Consider the following Markov chain:

Stationary Distribution
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Let pj(t) = probability that
the chain is at state j
at time t, and let

p(t)= (p0(t), p1(t), p2(t))

Suppose that
p(t)= (0.4, 0.2, 0.4)

Question: In this case, what will be p(t+1)?
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• After some calculation, we get
p(t+1)= (0.4, 0.2, 0.4)

which is the same as p(t)!!!
• We can see that in the previous example,

the Markov chain has entered an
“equilibrium”condition at time t, where

p(n)remains (0.4, 0.2, 0.4) for all n ¸ t

 this probability distribution is called a
stationary distribution

Stationary Distribution (2)
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• Precisely, let P be the transition matrix
of a Markov chain

Definition: If p(t+1)= p(t)P = p(t), then
p(t)is a stationary distribution
of the Markov chain

Question: How many stationary distribution
can a Markov chain have? Can it be more
than one? Can it be none?

Stationary Distribution (3)
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Ans. Can be more than one. For example,

Stationary Distribution (4)
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In this case, both (1,0,0,…,0) and (0,0,…,0,1)
are stationary distribution
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Ans. Can be none. For example,

Stationary Distribution (5)

Here, no stationary distribution exists

Question: Are there some conditions that
can tell if a Markov chain has a unique
stationary distribution?
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Definition: A Markov chain is irreducible if
its directed representation is a strongly
connected component. That is, every
state j can reach any state k

For example:

Special Markov Chains

1.0

0.5

0.5

1.0

1

2

0

irreducible

1.0

0.5

0.5

1.0

1

2

0

not irreducible



14

Definition: A Markov chain is periodic if
there exists some state j and some
integer d > 1 such that:

Pr(Xt+s = j | Xt = j) = 0
unless s is divisible by d

In other words, once we start at state j, we can only return
to j after a multiple of d steps

• If a Markov chain is not periodic, then it
is called aperiodic

Special Markov Chains (2)
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For example,

Special Markov Chains (3)
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Theorem: Suppose a Markov chain is finite
with states 0,1,…,n. If it is irreducible
and aperiodic, then
1. The chain has a unique stationary

distribution = (0, 1, …, n);
2. k = 1/hk,k, where

hk,k = expected # of steps to return to
state k, when starting at state k

Sufficient Conditions
A simplified version of an important result

of Ch. 7 is stated as follows:
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• Let G be a finite, undirected, and
connected graph

• Let D(G) be a directed graph formed by
replacing each undirected edge {u,v} of G
by two directed edges (u,v) and (v,u)

Definition: A random walk on G is a Markov
chain whose directed representation is
D(G), and for each edge (u,v), the
transition probability is 1/deg(u)

Random Walk



18

For example,

Random Walk (2)
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• Since G is connected, it is easy to check
that D(G) is strongly connected …[why?]

 Random walk on G is irreducible

• The lemma below gives a simple criterion
for a random walk on G to be aperiodic

Random Walk (3)

Lemma: A random walk on G is aperiodic if
and only if G is not bipartite

How to prove??
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() If G is bipartite, all cycles have even
number of edges. Then, if we start at
any vertex in D(G), it can only come back
to itself in even steps
So, d = 2, and the chain is periodic

() If G is not bipartite, there exists an
odd-length cycle C. Let w be any vertex
in C. Then, for any vertex u in D(G), it
can come back to itself in 2 steps (via (u,v)

then (v,u) for some v), and also in odd steps (via

a path from u to w, then C, then a path from w to u).
So, d = 1, and the chain is aperiodic
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Then, we have the following theorem:

Random Walk (4)

Lemma: If G =(V,E) is not bipartite, the
random walk on G has a unique stationary
distribution . Moreover, for vertex v,
the corresponding probability in is:

v = deg(v) / (2|E|)

Proof: The first statement follows
immediately since the random walk is
finite, irreducible, and aperiodic …
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Proof (cont)
For the second statement, we first see that

v2G v = v2G deg(v) / (2|E|) = 1

so that is a valid probability distribution

Next, let P be the transition matrix of the
random walk. Let N(v) be the set of the
neighbors of v (so |N(v)| = deg(v))

Then, the vth entry of P is:
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Proof (cont)

u2G u Pu,v

= u2N(v) u Pu,v + u 62 7N(v) u 0 = u2N(v) u Pu,v

= u2N(v) (deg(u)/(2|E|)) (1/deg(u))
= deg(v) / (2|E|) = v

 = P, so is a (unique) stationary
distribution of the random walk
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From now on, we assume G is not bipartite.
Recall that hv,u = expected number of steps

to reach u, starting from v
Then we have the following corollary:

Random Walk (5)

Corollary: In the random walk on G,
for any vertex v,

hv,v = 1/v = 2|E| / deg(v)

Next, we give a lemma for bounding hu,v
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Random Walk (6)

Lemma: For any edge (u,v) 2 E,

hu,v 2|E|

Proof: Let N(v) be the neighbor-set of v.
Then, hv,v can be expressed by:

(1/deg(v)) u2N(v) (1 + hu,v)

Then, by previous corollary, we see that

2|E| = u2N(v) (1 + hu,v)

 Lemma thus follows
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Cover Time
• For a graph G, we denote cover(v) to be

the expected number of steps to visit all
nodes in G by a random walk, starting at v

Definition: The cover time of G is defined
as maxv2G { cover(v) }

• Consider any spanning tree T of G
• Let = an Eulerian tour that traverses

each edge of T once in each direction
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Cover Time (2)

• Let v0, v1, …, v2|V|-3, v2|V|-2 be the sequence
of vertices in  (Note: v2|V|-2 = v0)

• Now, based on , consider a tour on G
that starts at v0, then by random walk
reaches v1, then by random walk reaches
v2, and so on, and it finally reaches v0

• Because in this tour, we cannot stop even
if we have visited every vertices of G
the expected time for this tour must
be at least cover(v0)



28

Cover Time (3)

• In fact, we can start from any vertex of
and obtain similar arguments
 The expected time for this tour must

be at least the cover time of G
• For the expected time for the tour, it is:

k=0 to 2|V|-3 hvk
,vk+1

(2|V|-2) 2|E| 4|V||E|

This gives the following theorem:

Theorem: The cover time of G · 4|V||E|
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ST Connectivity
• Given an undirected graph G = (V,E) and

two vertices s and t, we want to know if s
and t are connected

The following succeeds with prob 1/2

Step 1: Start a random walk on G from s
Step 2: If the walk reaches t in 4|V|3 steps,

return true. Otherwise, return false
Proof: If s and t are connected, expected time to reach t

from s is at most 2|V|3. Then apply Markov Inequality
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ST Connectivity (2)

• This algorithm is very space-efficient!
• Apart for the input G (which is read-only

here) and assume that we can choose a
random neighbor to visit at each step,
the algorithm just needs O(log |V|) bits
to store the current position!!!

Remark 1: Recently, Reingold (2006) shows that even
without the random bits, ST connectivity in undirected
graph can be done in O(log |V|) bits

Remark 2: If graph is directed, it becomes the hardest
problem solvable by an NTM using O(log |V|) bits


