
1

CS5314
Randomized Algorithms

Lecture 21: Markov Chains
(Definitions, Solving 2SAT)

2

•Introduce Markov Chains
–powerful model for special random processes

•Analyze a simple randomized algorithms
for 2SAT and 3SAT problems

Objectives

3

Definition: A collection of random variables
X = { Xt | t T } is called a stochastic
process. The index t often represents
time; Xt is called the state of X at time t

E.g., A gambler is playing a fair coin-flip
game: wins $1 if head, loses $1 if tail

Let X0 = a gambler’s initial money
Xt = a gambler’s money after t flips

 { Xt| t{0,1,2,…} } is a stochastic process

Stochastic Process

4

Definition: If Xt assumes values from a
finite set, then the process is a
finite stochastic process

Definition: If T (where the index t is chosen) is
countably infinite, the process is
a discrete time process

Question: In the previous example about a
gambler’s money, is the process finite?
Is the process discrete time?

Stochastic Process (2)

5

Markov Chain (Definition)

Definition: A discrete time stochastic
process X = {X0, X1, X2, …} is a Markov
chain if

Pr(Xt = a | Xt-1 = b, Xt-2 = at-2, …, X0 = a0)
= Pr(Xt = a | Xt-1 = b) = Pb, a

That is, the value of Xt depends on the value of Xt-1, but not
the history how we arrived at Xt-1 with that value

Question: In the example about a gambler’s
money, is the process a Markov chain?

6

In other words, if X is a Markov chain, then
Pr(X1 = a | X0 = b) = Pb, a

Pr(X2 = a | X1 = b) = Pb, a

…
 Pb, a

= Pr(X1 = a | X0 = b)
= Pr(X2 = a | X1 = b)
= Pr(X3 = a | X2 = b) = …

Markov Chain (2)

7

• Next, we focus our study on Markov
chain whose state space (the set of
values that Xt can take) is finite

• So, without loss of generality, we label
the states in the state space by 0,1,2,…,n

• The probability Pi,j = Pr(Xt = j | Xt-1 = i) is
the probability that the process moves
from state i to state j in one step

Markov Chain (3)

8

• The definition of Markov chain implies
that we can define it using a one-step
transition matrix P with

Pi,j = Pr(Xt = j | Xt-1 = i)

Question: For a particular i, what is j Pi,j ?

Transition Matrix

9

• The transition matrix representation of
a Markov chain is very convenient for
computing the distribution of future
states of the process

• Let pi(t) denote the probability that the
process is at state i at time t

Question: Can we compute pi(t) from the
transition matrix P, assuming we know
p0(t-1), p1(t-1), …?

Transition Matrix (2)

10

The value of pi(t) can be expressed as:

p0(t-1) P0,i + p1(t-1) P1,i + …+ pn(t-1) Pn,i

In other words, let p(t)denote the vector

(p0(t), p1(t), …pn(t))

Then, we have
p(t)= p(t-1)P

Transition Matrix (3)

11

• For any m, we define the m-step
transition matrix P(m) such that

P(m)
i,j = Pr(Xt+m = j | Xt = i),

which is the probability that we move
from state i to state j in exactly m steps

• It is easy to check that P(2) = P2,
P(3) = P . P(2) = P3, and in general, P(m) = Pm

 p(t+m)= p(t)Pm

Transition Matrix (4)

12

• Markov chain can also be expressed by a
directed weighted graph (V,E), such that
V = state space
E = transition between states
weight of edge (i,j) = Pi,j

Directed Graph Representation

0
1

2

0.3

0.7

1

0.4

0.5
0.1

13

• Given a Boolean formula F, with each
clause consisting exactly 2 literals. Our
task is to determine if F has satisfiable
 Can be solved in linear time ! (how??)

• Let n = # variables in F
• In the next slide, we describe a

randomized algorithm for solving this
problem, which is not efficient…
– However, we can modify the algorithm a bit

to solve the case when each clause has 3
literals instead (3SAT is NP-complete !)

Application: Solving 2SAT

14

1. Start with an arbitrary assignment
2. Repeat 2cn2 times, terminating with all

clauses satisfied
(a) Choose a clause that is currently not

satisfied
(b) Choose uniformly at random one of

the literals in the clause and switch
its value

3. If valid assignment found, return it
4. Else, conclude that F is not satisfiable

15

Questions:
(1) When will the algorithm make a wrong

conclusion?
Ans. …only when the formula is satisfiable,

but the algorithm fails to find a
satisfying assignment

(2) What is the success probability?
Ans. …let’s study it using Markov chain ^_^

Application: Solving 2SAT (3)

16

• Firstly, suppose that the formula F is
satisfiable (for the other case, we don’t care much
since the algorithm must give correct answer)

 That means, a particular assignment to
the n variables in F can make F true

• Let A* = this particular assignment
• Also, let At = the assignment of variables

after the tth iteration of Step 2
• Let Xt = the number of variables that are

assigned the same value in A* and At

Application: Solving 2SAT (4)

17

E.g., suppose that
F = (x1_:x2) ^ (x2_ x3) ^ (:x1_:x3)

and A*: x1 = T, x2 = T, x3 = F
• Also, suppose that after 4 iterations of

Step 2 in the algorithm, we have
A4: x1 = F, x2 = T, x3 = F

 X4 = # variables that are assigned
the same value in A* and A4

= 2

Application: Solving 2SAT (5)

18

• So, when Xt = n, the algorithm terminates
with a satisfying assignment
…in fact, the algorithm may terminate before Xt
reaches n, as it is possible that we find another
satisfying assignment
…but for our analysis, we are very pessimistic, and we
consider the algorithm only stops when Xt = n

• Let us take a closer look of how Xt
changes over time, so that we can tell
how long it takes for Xt to reach n

Application: Solving 2SAT (6)

19

• First, when Xt = 0, any change in the
current assignment At must increase the
of matching assignment with A* by 1.
So,

Pr(Xt+1 = 1 | Xt = 0) = 1

• When Xt = j, with 1 j n-1, we will
choose a clause that is false with the
current assignment At, and change the
assignment of one of its variable next …

Application: Solving 2SAT (7)

20

Question: What can be the value of Xt+1?
Ans. …it can either be j-1 or j+1

Question: Which is more likely to be Xt+1?
Ans. …j+1. It is because the assignment A*

will make this clause true, which must
mean that either one, or both the
variables in this clause is assigned
differently in At  If we change one
variable randomly, at least 1/2 of the
time At+1 will match more with A*

Application: Solving 2SAT (8)

21

• So, for j, with 1 j n-1 we have

Pr(Xt+1 = j+1 | Xt = j) ¸ 1/2
Pr(Xt+1 = j-1 | Xt = j) · 1/2

• Note: the stochastic process X0, X1, X2, …
is not necessarily a Markov chain…
– Reason : the transition probabilities, e.g.,

Pr(Xt+1 = j+1 | Xt = j), is not a constant
(sometimes, it can be 1, sometimes, it can be 1/2 …

in fact, this value depends on which j variables are
matching with A*, which in fact depends on the
history of how we obtain At)

Application: Solving 2SAT (9)

22

• To simplify the analysis, we invent a true
Markov chain Y0, Y1, Y2, …as follows:

Y0 = X0

Pr(Yt+1 = 1 | Yt = 0) = 1
Pr(Yt+1 = j+1 | Yt = j) = 1/2
Pr(Yt+1 = j-1 | Yt = j) = 1/2

• When compared with the stochastic
process X0, X1, X2, …, it takes more time
for Yt to increase to n …(why??)

Application: Solving 2SAT (10)

23

• Thus, the expected time to reach n from
any point is larger for Markov chain Y
than for the stochastic process X

 So, we have
E[time for X to reach n starting at X0]
· E[time for Y to reach n starting at Y0]

Question: Can we upper bound the term
E[time for Y to reach n starting at Y0]?

Application: Solving 2SAT (11)

24

Let us take a look of how the Markov chain
Y looks like in the graph representation

• Recall that vertices represents the state
space, which are the values that any Yt
can take on:

Application: Solving 2SAT (12)

2 n-1 n30 1 …

1

0.5 0.5

0.5

0.5

0.5

1

0.5

25

Let hj = E[time to reach n starting at state j]

Clearly,
hn = 0 and h0 = h1 + 1

Also, for other values of j, we have

hj = ½(hj-1 + 1) + ½(hj+1 + 1)

By induction, we can show that for all j,
hj = n2 –j2· n2

Application: Solving 2SAT (13)

26

• Combining with previous argument :
E[time for X to reach n starting at X0]
· E[time for Y to reach n starting at Y0]

· n2, which gives the following lemma:

Application: Solving 2SAT (13)

Lemma: Assume that F has a satisfying
assignment. Then, if the algorithm is
allowed to run until it finds a satisfying
assignment, the expected number of
iterations is at most n2

27

• Since the algorithm runs for 2cn2

iterations, we can show the following:

Application: Solving 2SAT (13)

Theorem: The 2SAT algorithm answers
correctly if the formula is unsatisfiable.
Otherwise, with probability 1 –1/2c,
it returns a satisfying assignment

How to prove?
(Hint: Break down the 2cn2 iterations into c groups, and

apply Markov inequality)

