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CS5314
Randomized Algorithms

Lecture 19: Probabilistic Method
(2nd Moment, Condition Expectation Inequality)
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•Introduce two further techniques (apart
from Counting, Expectation, Sample-and-Modify) to
show (non-)existence of a certain object

Second Moment Method
–Based on the Chebyshev inequality

Conditional Expectation Inequality
–Based on Binomial RV

Objectives
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The following is the core of this method :

Second Moment Method

Theorem: If X is a nonnegative integer-
valued random variable, then

Pr(X = 0) · Var[X] / (E[X])2

Proof: Pr(X = 0) · Pr(|X - E[X]| ¸ E[X])

· Var[X] / (E[X])2

Remarks: (1) if RHS 1  there is an object with X 0 ;

(2) if RHS 0  a random object almost always has X 0
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Next, we shall show a bound f such that :

1. when p ¿ f , a random graph from Gn,p

does not contain a 4-Clique (K4) w.h.p.

2. when p À f, a random graph from Gn,p

contains a K4 w.h.p.

We call f : threshold function for K4 to
occur in Gn,p

Will K4 exist in Gn,p ?



5

Theorem: Suppose p = o(n-2/3). Let G be a
random graph from Gn,p . Then,
for any 0 and sufficiently large n,

Pr(G contains K4) 

Will K4 exist in Gn,p ? (2)

How to prove??
(By Basic Counting / Expectation Argument)
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Let Xj be an indicator such that:
Xj = 1 if jth subset of four vertices

is a K4 in G
Xj = 0 otherwise

 E[Xj] = Pr(Xj = 1) = p6

Let X denote the number of K4 in G
 E[X] = C(n,4) p6 = o(n4 n-4) = o(1)

Proof
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This implies that for large enough n,
E[X] 

Since X is a non-negative integer, we have :

E[X] = j = 1,2, …j Pr(X = j)

¸ j = 1,2, …Pr(X = j)

= Pr(X ¸ 1)

 Theorem follows

Proof (2)
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Theorem: Suppose that p = (n-2/3). Let G
be a random graph from Gn,p . Then, for
any 0 and sufficiently large n,

Pr(G does not contain K4) 

Will K4 exist in Gn,p ? (3)

Let X = # of K4 in G
Proof Idea: By Second Moment Method

Compute E[X] and Var[X]

Before that, we introduce a simple result …
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Lemma: Let Y1, Y2, …, Ym be m indicators,
and Y = Y1 + Y2 + …+ Ym. Then,

Var[Y] · E[Y] + ij Cov(Yi,Yj)

A Simple Result

Proof: Since Yj is an indicator, E[Yj
2] = E[Yj]

Var[Yj] = E[Yj
2] –(E[Yj])2

· E[Yj
2] = E[Yj]

The lemma thus follows, since
Var[Y] = j Var[Yj] + i j Cov(Yi,Yj)
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Let Xj be an indicator such that:
Xj = 1 if the jth subset of four

vertices is a K4 in G
Xj = 0 otherwise

• We wish to bound Var[X] = Var[Xj] and
apply second moment method

– By the previous lemma, we can first consider
the values of Cov(Xi, Xj)

Back to the Proof …
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• The value of Cov(Xi, Xj) depends on
whether the ith subset of four vertices
share any vertex with the jth subset

There are four cases:
Case 0: They share no vertex
Case 1: They share 1 vertex
Case 2: They share 2 vertices
Case 3: They share 3 vertices

Back to the Proof … (2)
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For Case 0 (they share no vertex) :
 Xi and Xj are independent
 Cov(Xi, Xj) = 0

For Case 1 (they share 1 vertex) :
 Xi and Xj are independent (why?)
 Cov(Xi, Xj) = 0

Back to the Proof … (3)
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For Case 2 (they share 2 vertices) :

E[XiXj] = Pr(XiXj = 1)
= Pr(Xi = 1 | Xj = 1) Pr(Xj = 1)
= p5 * p6 = p11

 Cov(Xi, Xj) = E[XiXj] - E[Xi] E[Xj]
· E[XiXj] = p11

Back to the Proof … (4)
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For Case 3 (they share 3 vertices),

E[XiXj] = Pr(XiXj = 1)
= Pr(Xi = 1 | Xj = 1) Pr(Xj = 1)
= p3 * p6 = p9

 Cov(Xi, Xj) = E[XiXj] - E[Xi] E[Xj]
· E[XiXj] = p9

Back to the Proof … (5)
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 Var[X] · E[X] + i j Cov(Xi,Xj)

= C(n,4) p6 + i j Cov(Xi,Xj)

· C(n,4) p6 + (#Case2) p11 + (#Case3) p9

= C(n,4) p6 + O(C(n,6) p11) + O(C(n,5) p9)
= o(n8p12) …[why?? Recall: p = (n-2/3) ]

On the other hand, since
(E[X])2 = (C(n,4) p6)2 = (n8p12)

 Var[X] / (E[X])2 = o(1) theorem follows

Back to the Proof … (6)



16

Conditional Expectation Inequality

• Let X be a random variable such that
X 0  a certain object exists

E.g., X = # of K4 in a graph G chosen from Gn,p

 In this case, X 0 implies the existence of K4 in G

• If X can be expressed as a sum of
indicators (which is true in many situations),
we can usually get a simpler proof of
existence via the next theorem
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Lemma: Let X1, X2, …, Xn be n indicators,
and X = X1 + X2 + …+ Xn. Then,

Pr(X 0) ¸ j=1 to n (Pr(Xj = 1) / E[X|Xj = 1])
Note: We do not require Xj’s to be independent

Conditional Expectation Inequality

Proof: Let Y = 1/X if X 0
Y = 0 if X = 0

Note: XY is an indicator random variable!!
 Pr(X 0) = Pr(XY = 1) = E[XY] …
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Proof (cont)
So, Pr(X 0) = E[XY] = j=1 to n E[XjY]

= j=1 to n (E[XjY|Xj = 1] Pr(Xj = 1) +

E[XjY|Xj = 0] Pr(Xj = 0) )

= j=1 to n (E[Y|Xj = 1] Pr(Xj = 1) ) …[why?]

= j=1 to n (E[1/X|Xj = 1] Pr(Xj = 1) )
¸j=1 to n (Pr(Xj = 1) / E[X|Xj = 1]) …[Jensen]

 This completes the proof
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Existence of K4 in Gn,p (revisited)

• Now, we revisit the theorem in Page 8 and
give a simpler proof

• Recall: X = # of K4 in a random graph G
chosen from from Gn,p

And Xj be an indicator such that:
Xj = 1 if the jth subset of four

vertices is a K4 in G
Xj = 0 otherwise

 X = X1 + X2 + …+ XC(n,4)
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Existence of K4 in Gn,p (revisited)

First, recall that Pr(Xj = 1) = p6

• In order to apply conditional expectation
inequality to prove existence of K4 in Gn,p ,
we want to bound E[X | Xj = 1]

By linearity of expectation, we have

E[X | Xj = 1] = k=1 to C(n,4) E[Xk | Xj = 1]

= k=1 to C(n,4) Pr(Xk = 1 | Xj = 1) …[why?]
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Existence of K4 in Gn,p (revisited)

Question: What is Pr(Xk = 1 | Xj = 1)?
Ans. …depends on the number of vertices

shared by jth and kth subset
value of Pr # of k’s

Share 0 vertex: p6 C(n-4,4)
Share 1 vertex: p6 4 C(n-4,3)
Share 2 vertices: p5 6 C(n-4,2)
Share 3 vertices: p3 4 C(n-4,1)
Share 4 vertices: 1 1
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Existence of K4 in Gn,p (revisited)
Thus, E[X | Xj = 1]

= k=1 to nC4
Pr(Xk = 1 | Xj = 1)

= p6£C(n-4,4) + p6£ 4 C(n-4,3)
+ p5£6 C(n-4,2) + p3£ 4 C(n-4,1) + 1

 As n 1 and p = (n-2/3)

Pr(X 0) ¸ j=1 to C(n,4) (Pr(Xj = 1)/ E[X|Xj =1])

= C(n,4) p6 / E[X | Xj = 1] 1
 This completes the proof of the theorem


