CSbH314
Randomized Algorithms

Lecture 19: Probabilistic Method
(2nd Moment, Condition Expectation Inequality)



Objectives

» Introduce two further techniques (apart
from Counting, Expectation, Sample-and-Modify) 10
show (non-)existence of a certain object

Second Moment Method
- Based on the Chebyshev inequality

Conditional Expectation Inequality
- Based on Binomial RV



Second Moment Method

The following is the core of this method :

Theorem: If X is a honnegative integer-
valued random variable, then

Pr(X = 0) < Var[X]/ (E[X])?
Proof: Pr(X =0) < Pr(|X - E[X]| > E[X])
< Var[X]/ (E[X])?

Remarks: (1) if RHS <1 =» there is an object with X >0 ;
(2) if RHS =0 = a random object almost always has X >0
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Will K, exist in G, ,?
Next, we shall show a bound f such that :

1. when p < f, arandom graph from 6,
does not contain a 4-Clique (K,) w.h.p.

2. when p > f, a random graph from G,
contains a K, w.h.p.

We call f : threshold function for K, to
occur in G, ,



Will K, exist inG,,? (2)

Theorem: Suppose p = o(n?/3). Let G bea
random graph from G, , . Then,

for any ¢ > O and sufficiently large n,
Pr(G contains K,) < ¢

How to prove??
(By Basic Counting / Expectation Argument)



Proof

Let XJ- be an indicator such that:

X;=1 if j™ subset of four vertices
sakK,inG
X;=0  otherwise

> E[X]=Pr(X;=1)=p¢

Let X denote the number of K, in G
2> E[X]=C(n4)p°=o0(n*n*)=0(1)



Proof (2)

This implies that for large enough n,
E[X]<¢

Since X is a non-negative integer, we have :
E[X] = Zj 212, Pr(X =)
> Zj 212, Pr(X =)
=Pr(X>1)
= Theorem follows



Will K, exist inG,,? (3)

Theorem: Suppose that p = ©(n?/3). Let G
be a random graph from G, , . Then, for
any € > 0 and sufficiently large n,

Pr(G does not contain K,) < ¢

Let X =# of K, inG
Proof Idea: By Second Moment Method
Compute E[X] and Var[X]

Before that, we introduce a simple result ...



A Simple Result
Lemma: Let VY, VY,, .. Y, bemindicators,
and Y =Y, +Y,+ ..+ Y, . Then,
Var[Y] < E[Y]+ 2, Cov(Y.Y,)

Proof: Since Y, is an indicator, E[Y?] = E[Y|]
Var[Y;] = E[Y{] - (ELY;])
< E[yjz: = E[yj]
The lemma thus follows, since
Var[Y] = Z; Var[¥,] + 2, Cov(Y.Y))




Back to the Proof ..

Let XJ- be an indicator such that:

X;=1 if the j™ subset of four
verticesisa K, inG

XJ- =0 otherwise

We wish to bound Var[X] = Var[2X;] and
apply second moment method

- By the previous lemma, we can first consider
the values of Cov(X;, X))
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Back to the Proof ..

The value of Cov(X;, X;) depends on
whether the ith subset of four vertices
share any vertex with the j™ subset

There are four cases:
Case 0: They share no vertex
Case 1. They share 1 vertex
Case 2: They share 2 vertices
Case 3: They share 3 vertices
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Back to the Proof ... (3)

For Case O (they share no vertex) :
2  X;and X, are independent
2>  Cov(X, X))=0

For Case 1 (they share 1 vertex) :
2  X;and X, are independent (why?)
2>  Cov(X, X;)=0

12



Back to the Proof ... (4)

For Case 2 (they share 2 vertices) :
E[XX;]=Pr(XX,=1)
=Pr(X;=1| X;=1)Pr(X; = 1)
= p5* pb = pll
< E[Xixj] = ptt
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Back to the Proof ... (5)

For Case 3 (they share 3 vertices),
E[Xin] = Pr(Xin = 1)
=Pr(X.= 1| X; = 1) Pr(XJ- = 1)
= p3* pb = p?
< E[XX] = p’
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Back to the Proof ... (6)
2> Var[X] < E[X]+ X, ; Cov(X; X))
= C(n4) p®+Z;,; Cov(X; X))
< C(n,4) p® + (#Case?2) p!! + (#Case3) p°®
- C(n,4)pe + O(C(n,6) p*) + O(C(n5) p°)
g o(n8p12) .. [why?? Recall: p = o(n2/3) ]
On the other hand, since

(E[XD)? = (C(n,4) p°)? = ©(n®p'?)
= Var[X]/ (E[X])? = o(1) = theorem follows



Conditional Expectation Inequality

Let X be a random variable such that

X >0 & a certain object exists

E.g.. X = # of K, in a graph G chosen from G, ,
= In this case, X > 0 implies the existence of K, in 6

If X can be expressed as a sum of
indicators (which is true in many situations),
we can usually get a simpler proof of
existence via the next theorem
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Conditional Expectation Inequality

Lemma: Let X, X,, ..., X, be n indicators,
and X = X;+ X, + .. + X,.. Then,

Pr(X > 0) > Zujzg 100 (Pr(X;= 1) 7 EIX]X; = 11)

Note: We do not require X;'s to be independent

Proof: LetY=1/X ifX>0

Y=0 if X=0
Note: XY is an indicator random variablell
= Pr(X>0)=Pr(XY =1)=E[XY]..

17



Proof (cont)
So, Pr(X >0)= E[XY]= X1, E[XY]
= 21100 (EDXYIX;= 1]Pr(X;= 1) +
E[X,Y|X;= 0] Pr(X;=0))
= 2ig4on (EIYIX = 11Pr(X;= 1) ) .. [why?]

= 2ic o0 (E[1/XIX;= 1] Pr(X;=1) )
> 21 1on (PP(X;= 1) 7 E[X|X; = 1]) .. [Tensen]
= This completes the proof
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Existence of K, in Gy, , (revisited)

Now, we revisit the theorem in Page 8 and
give a simpler proof

Recall: X = # of K, in a random graph G
chosen from from G, ,

And XJ- be an indicator such that:

Xi=1 if the j™ subset of four
verticesisa K, inG

XJ- =0 otherwise
9 X - Xl + XZ + coo + XC(n,4)
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Existence of K, in Gy, , (revisited)

First, recall that Pr(X; = 1) = p®

In order to apply conditional expectation

inequality to prove existence of K4in G,
we want to bound E[X | X;= 1]

By linearity of expectation, we have
ELX | Xj: 1] = Zk:no C(n,4) E[Xkl Xj = 1]
- ZkZI to C(n,4) Pr‘(xk — 1 l XJ — 1) [Whyo]
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Existence of K, in Gy, , (revisited)

Question: What is Pr(X, = 1] X;=1)?

Ans. ... depends on the number of vertices
shared by j™ and k™ subset

Share 0O vertex:
Share 1 vertex:
Share 2 vertices:

Share 3 vertices:
Share 4 vertices:

value of Pr

pé
6

w O

P
P
P
1

# of K's
C(n-4,4)
4 C(n-4,3)
6 C(n-4,2)
4 C(n-4,1)
1
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Existence of K, in Gy, , (revisited)
Thus, E[X | X;=1]
= Zkzl‘l'onC4 Pr'(Xk: 1 | XJ: 1)

= p® x C(n-4,4) + p® x 4 C(n-4,3)
+p°> x6 C(n-4,2) + p3 x4 C(n-4,1) + 1
2 Asn > coand p = o(n?/3)

Pr(X > 0) > 2.1 1o cosy (PP(X; = 1)/ E[X|X; =1])

=C(n4)p°/EX | X;=1]~1
=> This completes the proof of the theorem 22



