CS5314 Randomized Algorithms

Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify)

1

Objectives

• Introduce two topics:

De-randomize by conditional expectation

 provides a deterministic way to construct an object with some property

Sample-and-modify

 a more advanced technique to prove the existence of a certain object De-randomization (using Conditional Expectation)

- Let us revisit the large-cut problem
- Recall that this problem is NP-hard
- We have shown that there exists a cut of size at least m/2, and whose size is thus at least half of the largest cut

Question: Can we construct such an approximate large-cut explicitly?

Finding Large-Cut

- Let G=(V, E) be a graph with n vertices and m edges
- Let $v_1, v_2, ..., v_n$ be the vertices in V
- Recall that if we partition V by placing each vertex randomly and independently into A and B, the expected size of the cut(A,B) is at least m/2
- → Without loss of generality, we assume that v_1 is placed in A

Finding Large-Cut (2)

Consider the two cases how v_2 is placed Knowing v_1 is in A, we can actually determine E[size of cut(A,B) | v_2 is in A], and E[size of cut(A,B) | v_2 is in B] (how?)

Questions:

Can we make use of these values to decide where to place v_2 ?

Finding Large-Cut (3)

Observation:

If our target is to find a cut whose size is at least E[size of cut(A,B)], it cannot be wrong to place v_2 in the set whose corresponding expectation is larger

Proof: WLOG, suppose that $E[size of cut(A,B) | v_2 is in B]$ $\geq E[size of cut(A,B) | v_2 is in A]$

Proof

Then,

- E[size of cut(A,B)]
- = E[size of cut(A,B) | v_2 in A] Pr(v_2 in A) + E[size of cut(A,B) | v_2 in B] Pr(v_2 in B)
- \leq E[size of cut(A,B) | v₂ is in B]
- → Placing v₂ in B ensures at least one assignment of remaining vertices will have cut-size ≥ E[size of cut(A,B)]

Finding Large-Cut (4)

Knowing v₁ is in A, and which set (say X₂) is better to place v₂, we can determine
 E[size of cut(A,B) | v₂ in X₂, v₃ in A] and
 E[size of cut(A,B) | v₂ in X₂, v₃ in B]

Question:

Can we make use of these values to decide where to place v_3 ?

Finding Large-Cut (5)

Ans. Definitely Yes !!

- → We should place v₃ in the set that maximizes the above conditional expectation, because it ensures that one assignment of remaining vertices has cut-size ≥ E[size of cut(A,B)|v₂ in X₂]
- → By our choice of X₂, such an assignment has cut-size ≥ E[size of cut(A,B)]

Finding Large-Cut (6)

- Continue the above process, we can decide where to place v_2 , v_3 , ..., v_n
- Let $X_2, X_3, ..., X_n$ be the corresponding set each are placed

Then, we must have

E[size of cut (A,B)]

 \leq E[size of cut (A,B) | v_j in X_j for j=2,..., n]

Finding Large-Cut (7)

Since

$m/2 \leq E[size of cut(A,B)]$

and

E[size of cut(A,B) | v_j in X_j for j=2,..., n]

- = size of cut (A,B)
 when v_j is in X_j for j = 2,..., n
- → We obtain a cut (deterministically) whose size is at least m/2 !!!

Sample-and-Modify

In Basic counting/Conditional expectation :

- we construct some probability space
- show that an object with some desired properties can be picked directly
- In Sample-and-Modify:
 - we first select an object randomly, but it may not have the desired properties
 - then we modify the object to get the desired properties

Independent Set

Definition: An independent set of a graph G is a set of vertices with no edges between them

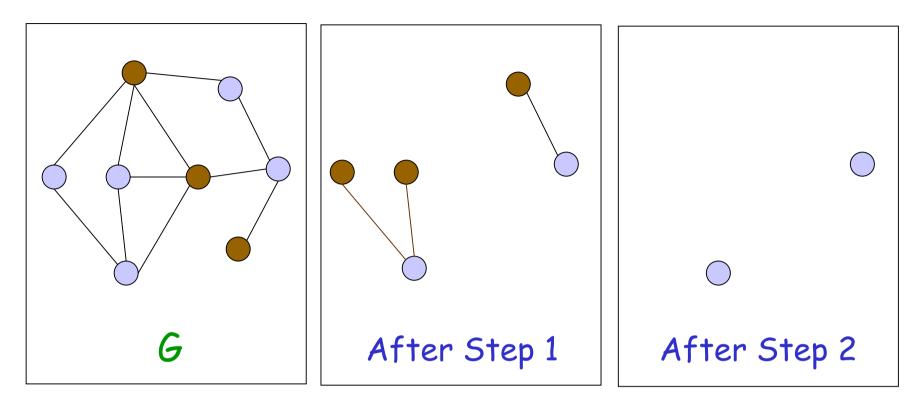
- Finding an independent set with largest number of vertices is NP-hard
- Let's use Sample-and-Modify to obtain a lower bound on size of the largest independent set

Independent Set (2)

Theorem: Let G be a graph with n vertices and m edges. Then G has an independent set with at least $n^2/(4m)$ vertices

Proof: Let d = 2m/n = ave degree (wlog, assume each connected component has ≥ 3 vertices, so d > 1)
Consider the following:

- Delete each vertex (and its incident edges) independently with probability 1 - 1/d
- 2. For each remaining edge, remove it by removing randomly one of its vertex



Vertex to be removed

- After Step 1: may not be independent
- After Step 2: must be independent (why?)

Proof (cont)

- Let X = # vertices after Step 1
- Let Y = # edges after Step 1
- Let Z = # vertices after Step 2
- Target: Can we bound E[Z]? Firstly, E[X] = n/d, E[Y] = m/d² = n/(2d)

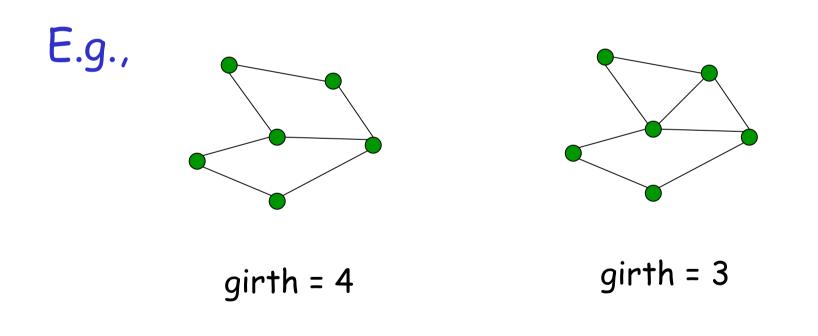
Proof (cont)

Then, we have

 $Z \ge X - Y$... (why not Z = X-Y?) So, E[Z] \ge E[X-Y] = E[X] - E[Y] = n/(2d) = n²/(4m)

Theorem follows from expectation argument

Graphs with Large Girth Definition: The girth of a (simple) graph G is the length of the smallest cycle



Graphs with Large Girth (2)

- Intuitively, we expect graphs with large average degree to have small girth
- However, this is not necessarily true ...

We start by showing the following theorem:

Theorem: For any integer $k \ge 3$, there is a graph with n vertices, at least $n^{1+1/k}/4$ edges, and girth at least k

How to prove?

Proof

Consider the following algorithm:

- 1. Set $p = n^{1/k-1}$
- 2. Select a graph G randomly from $G_{n,p}$
- 3. For any cycle that appears in G with length less than k, remove one edge randomly in that cycle
- The graph obtained after Step 3 have girth at least k

(Did you see that we are using the Sample-and-Modify?)

Proof (2)

It remains to find # edges in the final graph First, let X = # edges in G \rightarrow E[X] = n(n-1)p/2 = (1/2) n^{1+1/k}(1-1/n) ≥ (1/3) n^{1+1/k}

Next, let Y = # cycles in G with length < k

 observe that any specific cycle of length j occurs with probability p^j

Proof (3)

Since possible # length-j cycle = n(n-1)(n-2)...(n-j+1)/(2j)

 $\Rightarrow E[Y] = \sum_{j=3 \text{ to } k-1} p^j n(n-1)(n-2)...(n-j+1)/(2j)$ $\leq \sum_{j=3 \text{ to } k-1} p^j n^j$ $= \sum_{j=3 \text{ to } k-1} n^{j/k} < \sum_{j=3 \text{ to } k-1} n^{(k-1)/k}$ $< kn^{(k-1)/k} \leq n \qquad \text{for large enough n}$

Proof (4)

```
Let Z = # edges after Step 3
Then, we have Z > X - Y ... (why not Z = X - Y?)
So, E[Z] > E[X-Y]
           = E[X] - E[Y]
           > (1/3) n^{1+1/k} - n for large enough n
           > (1/4) n^{1+1/k}
                                 for large enough n
```

→ Theorem follows

Graphs with Large Girth (3)

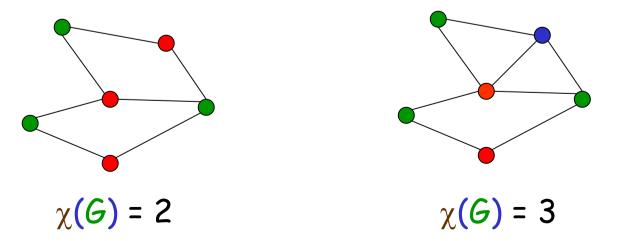
• The previous theorem immediately gives the following corollary:

Corollary: For any integer $k \ge 3$ and any positive real d representing the average degree, there is a graph with n vertices, at least nd/2 edges, and girth at least k

Proof: Choose sufficiently large n such that $n^{1/k} > 2d$

Graphs with Large Girth (4) A related problem is as follows: Let G be a (simple) graph

Definition: The chromatic number, $\chi(G)$, is the minimum # colors needed to color vertices of G such that no adjacent vertices have the same color



Large $\chi(G)$ and Large Girth

- Intuitively, we expect graphs with large chromatic number to have small girth
- However, this is not necessarily true... The theorem below is due to Erdős (1959):

Theorem: For all $k \ge 3$ and positive c, there is a graph with $\chi(G)$ at least c and girth at least k

How to prove?

Proof

Consider the following algorithm:

- 1. Set $p = n^{1/k-1}$
- 2. Select a graph G randomly from $G_{n,p}$
- 3. For any cycle that appears in G with length less than k, remove one Vertex randomly in that cycle
- The graph obtained after Step 3 have girth at least k

Proof (2)

Let Y = # cycles in G with length less than k As shown before:

 $E[Y] = \sum_{j=3 \text{ to } k-1} p^{j} n(n-1)(n-2)...(n-j+1)/(2j)$ < kn^{(k-1)/k} = o(n) for large enough n

Then, by Markov inequality, $Pr(Y \ge n/2) = o(1)$ for large enough n

Proof (3)

 Next, we investigate the size of the largest independent set in G, as this will be related to the chromatic number

Let A = size of largest independent set in G

- For any x, if $A \ge x$, there must exists a group of x vertices such that no edges are between them
- By union bound, we have $Pr(A \ge x) \le C(n,x)(1-p)^{x(x-1)/2}$

Proof (4) When x is slightly large, say $[(3 \ln n)/p]$, $Pr(A \ge x) \le C(n,x)(1-p)^{x(x-1)/2}$ $\leq n^{x} (1-p)^{x(x-1)/2}$ $\leq n^{x} e^{-px(x-1)/2} = (n e^{-p(x-1)/2})^{x}$ \leq (n e^{-px/2.5})^x for large enough n \leq (n^{-0.2})^x = o(1)

Proof (5)

Then, for large enough n, we have $Pr(Y \ge n/2) \le 0.1$ and $Pr(A \ge \lceil (3 \ln n) / p \rceil) \le 0.1$ This implies that, for large enough n Pr((Y < n/2) \cap ($A < \lceil (3 \ln n) / p \rceil$) ≥ 0.8 > 0 ... (why?)

Proof (6)

That is, for large enough n,

we can select a graph G with less than n/2 cycles of "short" lengths, and whose largest independent set is at most 3 ln n / p

→ After removing one vertex from each "short" cycle in this graph G, # vertices in the resulting graph (after Step 3) \ge n/2

(What happens to the largest independent set?)

Proof (7)

Let G^{*} = resulting graph after Step 3 Let $A(G^*)$ = size of largest indep set of G^* Obviously, $A(G^*) \leq A(G) \leq 3 \ln n / p$... (why?) Also, $A(G^*) \ge |G^*|/\chi(G^*)$... (why?) Combining, we get $\chi(G^*) \ge |G^*| / A(G^*) \ge (n/2) / (3 \ln n/p)$ $= n^{1/k}/(6\ln n) \ge c$ for large enough n

→ G^{*} exists with girth \geq k, and χ (G^{*}) \geq c