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CS5314
Randomized Algorithms

Lecture 17: Probabilistic Method
(Introduction)
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•Introduce Probabilistic Method
–a powerful way of proving existence of

certain objects

•Idea: If a certain object can be selected
with positive probability (in some sample space),
then this object must exist

•Introduce two techniques :
Basic Counting and Expectation

Objectives
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Question: Is it possible to color edges of a
complete graph in red or green, so that
there is no large monochromatic clique ?

– monochromatic = same color

• Let n = # vertices in the graph
• Let Kk = A clique of k vertices

Then, we have the following theorem:

Basic Counting Argument
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Theorem:
If 2C(n,k) /2C(k,2) 1, we can color edges
of Kn using red or green such that there
is no red Kk and no green Kk subgraphs

Basic Counting Argument (2)

Proof:
Define a sample space
S = all possible colorings of edges of Kn
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• Consider choosing a coloring from S,
uniformly at random

Let G = the chosen colored graph

• One way to choose:
Start with an empty graph ; Color each
edge in a particular color with prob = 1/2

Thus, for a particular k-vertex clique, it is
monochromatic with probability 2/2C(k,2)

Proof (cont)
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Let x = #distinct k-vertex clique in Kn

Question: What is the value of x?

Let A be the event such that
A := there is a k-vertex clique in Kn

and A1, A2, …, Ax be the events such that
Aj := jth k-vertex clique is monochromatic

 Pr(A) · Pr(A1) + …+ Pr(Ax)
· x 2/2C(k,2) = 2C(n,k) /2C(k,2) 1

Proof (cont)
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• In other words, the event A’(the complement
of A), which is the event that there is no
k-vertex clique in Kn happens with
probability:

Pr(A’) = 1 - Pr(A) 1 –1 = 0

 there must exist a coloring with no
monochromatic Kk subgraph

Proof (cont)
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Question: In a group of 1000 people, is it
possible that for any 20 people selected,
some pair of people know each other,
while some pair of people don’t know each
other?

Answer: Yes (why??)

Example
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• Mapping each person to a vertex, and
each relationship (friend/non-friend) to
one of the colors, we have

n = 1000 and k = 20 (note: n · 2k/2)

So, 2C(n,k) /2C(k,2)

· 2(nk / k!)/2C(k,2) · 2(2k2/2 / k!)/2C(k,2)

= 2(2k/2/k!) = 2048/(20!) 1

 Thus, the answer of the question is YES

Example (2)
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• An interesting branch in Mathematics,
called Ramsey Theory, studies the
minimum n to guarantee the two-coloring
of Kn must either contain a red r-clique
or a green s-clique

• Such an n is denoted by R(r,s)
• For example,

R(2,s) = s, R(3,3) = 6

A Side Note
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A related quote by Joel Spencer:
“Erdos asks us to imagine an alien force, vastly

more powerful than us, landing on Earth and
demanding the value of R(5,5) or they will
destroy our planet.

In that case, he (Erdos) claims, we should
marshal all our computers and all our
mathematicians and attempts to find the value.

But suppose, instead, that they ask for R(6,6).
In that case, he believes, we should attempt to
destroy the aliens.”

A Side Note
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• Another method to prove the existence
of an object is by averaging argument

• Based on the fact that :
For a random variable X,

Pr( X E[X] ) 0
Pr( X E[X] ) 0

• The proof is given in the next slides

Expectation Argument
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Lemma: Let S be a probability space and a
random variable X (defined on S)
Suppose E[X] = . Then,

Pr(X ¸ ) 0

Expectation Argument (2)

Proof: Suppose on contrary Pr(X ¸ ) = 0

Then, = x Pr(X=x) = x x Pr(X=x)

x Pr(X=x) = 
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Lemma: Let S be a probability space and a
random variable X (defined on S)
Suppose E[X] = . Then,

Pr(X · ) 0

Expectation Argument (3)

Proof: Suppose on contrary Pr(X · ) = 0

Then, = x Pr(X=x) = x x Pr(X=x)

x Pr(X=x) = 
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Definition: A cut is a partition of the set of
vertices V of a graph into two
disjoint sets V1 and V2

Definition: The size of a cut (V1,V2) is
#edges with one endpoint from
V1 and one endpoint from V2

Fact: Finding a cut in a graph G with
maximum size is NP-hard

Example 1: Large Cut
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New Target:
Can we get a sub-optimal cut, but whose
size is at least half of the optimal?

We begin with some observations:
Let m = #edges in G
Trivial Fact: Size of any cut in G m

Question: How about a lower bound?

Example 1: Large Cut (2)
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Theorem: There is some cut in G whose size
is at least m/2

Lower Bound of Maximum Cut

Proof: Let us construct a cut (V1,V2) by
assigning each vertex of G randomly and
independently into one of the two sets.
That is, Pr(v in V1) = Pr(v in V2) = 1/2

Let X = size of this cut
Question: What is E[X]?
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Let X1, X2, …, Xm be indicators such that

Xj = 1 if jth edge has one endpoint from
V1 and one endpoint from V2

Xj = 0 otherwise

Then, E[Xj] = 1/2 …(why??)

Also, X = X1 + X2 + …+ Xm

 E[X] = E[X1 + X2 + …+ Xm] = m E[X1] = m/2
 Theorem thus follows

Lower Bound of Maximum Cut (2)
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• Now, we know that by random assignment
of vertices, it is possible to get a cut
whose size is at least m/2
 at least half of optimal

• Let us see the probability that we can
generate such a cut (of size at least m/2)
in one random assignment

Example 1: Large Cut (3)
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Let X = size of the random cut
p = Pr(success) = Pr(X ¸ m/2)

Then, we have
m/2 = E[X]

= x m/2 x Pr(X=x) + x ¸ m/2 x Pr(X=x)
· (1-p)(m/2 –1) + pm …(why??)

 Pr(success) = p ¸ 1 / (m/2 + 1)
 can get a sub-optimal cut by repeating

random assignment

Example 1: Large Cut (4)
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Definition: A literal is a Boolean variable or
a negated Boolean variable. E.g., x, : y

Definition: A clause is several literals
connected with _’s. E.g., ( x _ y _ : z)

Definition: A SAT formula is an expression
made of clauses connected with ^’s. E.g.,
( x _ y _ : z) ^ (: y _ z) ^ (: x)

Definition: A formula is satisfiable if there
is an assignment of variables to T/F such
that the value of formula is TRUE

Example 2: MAXSAT
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Fact: Determining a SAT formula is
satisfiable is NP-complete

• Related problem: Find an assignment of
variables that maximize #true clauses

Fact: Finding the above assignment is an
NP-hard problem

 Finding optimal assignment with max
clauses satisfied may be time-consuming

Example 2: MAXSAT (2)



23

New Target:
Can we get a sub-optimal assignment?

We begin with some observations:
Let m = # clauses in the formula
Trivial Fact: #clauses satisfied in any

assignment is at most m
Question: How about a lower bound?

Example 2: MAXSAT (3)
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Theorem:
Let k = #literals in the smallest clause
Then, there is an assignment that
satisfies at least

m(1 –1/2k) clauses

Lower Bound of MAXSAT

How to prove? (Left as an exercise)


