
1

CS5314
Randomized Algorithms

Lecture 15: Balls, Bins, Random Graphs
(Hashing)

2

•Study various hashing schemes

•Apply balls-and-bins model to analyze
their performances

Objectives

3

• Suppose our library wants to maintain a
book inventory system so that a user can
search if a certain book is available
A Natural Method:
Keep a list of the names of the books

 When a user asks for a certain book,
we check if its name w is in the list

Chain Hashing

4

• Assume each book name is of O(1) length
(say, 8 to 80 characters)

• Let m = # books in our library

• To speed up the checking process, we
store the m book names in sorted order

 checking w takes: O(log m) time

Chain Hashing (2)

5

Another idea to speed up:
Create a hash function f that places the
m book names into n bins
 Name x is placed in Bin f(x)

• When w arrives, we compare w with all
the names in Bin f(w)

 Report found if w is in Bin f(w)

Chain Hashing (3)

6

• Usually, we can find a good hash function
f, such that:

For a random name x,
1. Pr(f(x) = j) = 1/n for each j
 f appears random

2. Values of f(x) are independent of each
other  f appears independent

Chain Hashing (4)

7

• In addition, suppose further we can
compute f(x) in O(1) time …

• What will be the time for the checking?
[Can you see it is exactly asking about
the load in the Balls-and-Bins model?]

• Firstly,
E[# names in a bin] = m/n

Chain Hashing (5)

8

• If n = m,
 Expected # names = 1

•Also, maximum # names in a bin is:
(ln m / ln ln m) w.h.p.

 Better than binary search !!!
 Drawback: wasted space

For instance, if we use m bins for m items,
several bins will be empty …

Chain Hashing (6)

9

• Suppose we now have a similar problem :
to maintain a password checker system
so that a user can tell if a certain
password is in the blacklist

 Before a user updates the password
to w, we check if w is in the blacklist

• Let m = # bad passwords in the blacklist

Approximate Membership

10

Using the previous ideas, we can either

• Maintain sorted list:
 checking time: O(log m)

• Find a good hash function:
 checking time: O(ln m/ln ln m) w.h.p.

Approximate Membership

11

Alternative scheme :

Target: To save space
Trade-off: Allow false positive errors

(meaning: we may say w is bad even if
it is not in the blacklist)

However, we will never say w is good if it
is in the blacklist

Approximate Membership

12

Idea: To represent each of the m bad
passwords with a short fingerprint

Then, when w arrives,
1. compute the fingerprint of w
2. If it matches fingerprints of any bad

passwords, we say w is in the list
3. Else, we say w is not in the list

Thus, the shorter the fingerprint, the more
likely that a false positive error occurs

Approximate Membership (2)

13

In general, our problem is as follows:
• Let S = { s1, s2, …, sm }, with si 2 [1,U] .
• Assume we have a good hash function so

that each si can be mapped randomly to a
short fingerprint of b bits long

• Suppose we also allow
Pr(false positive error) r

Question: What is min length of b?

Approximate Membership (3)

14

With the given hash function,
for an item s’not in S, an item sj in S,
Pr(s’and sj have different fingerprints)
= 1 –1/2b

 For an item s’not in S,
Pr(false positive error)
= 1 - (1 –1/2b)m  1 –e-m/2b

Approximate Membership (4)

15

Since we want the false positive error
probability to be at most r, we need

r  1 –e-m/2b

So, e-m/2b  1 –r, or -m/2b  ln (1 –r)
 2b  -m / ln (1 –r)
 b  log2 (-m / ln (1 –r))

Thus, if r is a constant, b = (log m)

Approximate Membership (5)

16

• What if we choose b = 2 log m ?
• In this case,

Pr(false positve error)
= 1 - (1 –1/2b)m

= 1 - (1 –1/m2)m

1/m

Approximate Membership (6)

17

Can we get more tradeoff between space (b)
and false positive error probability (r)?

A method, called Bloom Filter, is to prepare:
•an n-bit vector A[1..n] (initially all bits are 0)

•k independent good hash functions,
h1, h2, …, hk,

each can map an element to [1,n]

Bloom Filters

18

Then, for each element sj in S,
1. Compute k hash values hi(sj)
2. Mark corresponding bits A[hi(sj)] to 1

Later, to test if a value s is in S,
1. Apply the k hash functions on s
2. Find the corresponding k bits in A
3. If all are 1, we conclude that s is in S
4. Else, we conclude that s is not in S

Bloom Filters (2)

19

Questions:
When can a Bloom filter make an error?

(1) Will it say s is in S when s is not in S?
(2) Will it say s is not in S when s is in S?

Answer. (1) Yes. (2) No.
 Only have false positive errors

Bloom Filters (3)

20

• The probability of false positive error
can be calculated as follows:
(recall: m = size of S, n = length of A)

• First, in the desired Bloom filter,
Pr(a specific bit A[x] == 0)
= (1- 1/n)km e-km/n = p

• Next, we assume exactly a fraction of p
entries in A is 0
 this assumption will be removed later

Bloom Filters (4)

21

Based on the assumption, we have
Pr(false positive error)
= (1 - p)k

 We should minimize the value

f = (1 - p)k = (1 - e-km/n)k

Question:
Should we use a large k? Or a small k?

Bloom Filters (5)

22

Suppose m and n are given. Observe that:

(1) False positive error occurs only if all
the corresponding k bits are 1
 if k is large, more difficult to occur
 Better to have large k

(2) If k is very large, the bit-vector A in
will be nearly all 1’s !
 easy to have false positive error …

Bloom Filters (6)

23

First, to minimize f  minimize ln f

• Let us find the optimal k by calculus:

• Let g(k) = ln f = k ln (1 - e-km/n)

• Differentiating g, we have
g’= ln (1 - e-km/n) + ke-km/n(m/n)/(1 - e-km/n)

 g’= 0 when k = (ln 2) (n/m)
which corresponds to a global minimum

Bloom Filters (7)

24

When we choose the best k = (ln 2) (n/m),
f = (1 - e-km/n)k

= (1/2)k

= (0.6185)n/m

Remark 1: In practice, k must an integer, so we
cannot achieve the global min
 Actual f will be slightly higher

Remark 2: If k = 1, it is exactly the previous
fingerprint scheme

Bloom Filters (8)

25

Question: What is space usage per item?
• The space of the k hash functions should

be negligible

• A Bloom filter uses n bits, and we have m
items  n/m bits per item

Is Bloom Filter better than the previous
fingerprint scheme?

Bloom Filters (9)

26

For fingerprint scheme,
constant false positive error probability
requires (log m) bits per item …

For Bloom filter,
already very effective if we have
constant bits per item

E.g., when n/m = 8, k is around 5 or 6
 Pr(false positive error) 0.021

Bloom Filters (10)

27

• We now remove the assumption that
exactly a fraction of p entries in A is 0

• In the actual case, the fraction of 0 is
equivalent to the fraction of empty bins
after km balls are thrown into n bins

(1) What is E[#entries with 0 balls] ?

(2) How to bound the actual fraction of 0
is very close to p?

Bloom Filters (11)

28

Answer:

(1) The expected number of entries with
0 balls = n(1- 1/n)km

(2) Let us use Poisson Approximation

Let p’= (1- 1/n)km

Let X = number of 0-entries
r = km = number of balls

Bloom Filters (12)

29

Also, define indicator
Xj = 1 if jth entry has 0 balls

Xj = 0 otherwise

 X = X1 + X2 + …+ Xn

 Pr(|X –np’| ¸ n in exact case)
· er1/2 Pr(|X –np’| ¸n in Poisson case)

= er1/2 Pr(|jXj –np’| ¸ n in Poisson case)

Bloom Filters (13)

30

• In Poisson case, Xj’s are independent, and
each of them has probability p’to be 1

• In other words, in Poisson case,

X = sum of n independent Bernoulli trials
each with probability p’of success

= Bin(n, p’)

Bloom Filters (14)

31

• Thus, we can apply Chernoff bound for
Bin(n, p’) and obtain:

Pr(|X –np’| ¸ n in exact case)

· er1/2 Pr(|X –np’| ¸ n in Poisson case)

= er1/2 Pr(|Bin(n, p’) –np’| ¸ n)

· er1/2 2e-n2/3p’· 0.00001 when n is large

Bloom Filters (15)

32

• Thus, when n is large, the actual fraction
of 0, X/n, is very close to p’, w.h.p.

• Also, recall: p’= (1- 1/n)km

and p = e-km/n

so that p’p

 actual fraction of 0 is very close to p
 previous assumption is true w.h.p.

Bloom Filters (15)

33

• Suppose n users run their programs on a
server and want to get the running times

• In order to measure the time accurately,
they agree to use the server sequentially,
one program at a time

• Of course, each user wants to be
scheduled as early as possible …

Question: How can we decide a permutation
of the users quickly and fairly?

Breaking Symmetry

34

We can use hashing to help !
1. Create a hash function f that maps each

user to one of the 2b bins (i.e., hash a
user into a number between [1,2b])

2. Sort users based on their hash values

For this scheme to work, we do not want two
users to have the same hash value

 this should happen w.h.p. when b is large

Breaking Symmetry (2)

35

Assume that the hash function is good
(which appears random and independent)

 Probability that a particular user receive
a hash value same as some other user is:

1 - (1 –1/2b)n-1 (n-1)/2b

Thus, by union bound,
Pr(all users has distinct hash value)
1 –n(n-1)/2b

1 –1/n …when b = 3 log n

Breaking Symmetry (3)

36

Advantage: Extremely flexible !
New user can join at any time, as long as
they do not have the same hash value as
the existing users

Related problem:
Selecting a leader from n people
 If we have a good hash function, we

can hash each user and select one
with smallest value to be the leader

In this case, what should b be? (Ex. 5.25)

Breaking Symmetry (4)

