CSbH314
Randomized Algorithms

Lecture 15: Balls, Bins, Random Graphs
(Hashing)




Objectives

- Study various hashing schemes

» Apply balls-and-bins model to analyze
their performances



Chain Hashing

Suppose our library wants to maintain a
book inventory system so that a user can
search if a certain book is available

A Natural Method:
Keep a list of the names of the books

=» When a user asks for a certain book,
we check if its name w is in the list



Chain Hashing (2)

Assume each book name is of O(1) length
(say, 8 to 80 characters)

Let m = # books in our library

To speed up the checking process, we
store the m book names in sorted order

= checking w takes: O(log m) time



Chain Hashing (3)

Another idea to speed up:

Create a hash function f that places the
m book names into n bins

= Name x is placed in Bin f(x)

When w arrives, we compare w with all
the names in Bin f(w)

= Report found if w is in Bin f(w)



Chain Hashing (4)

Usually, we can find a good hash function
f, such that:

For a random name x,
1. Pr(f(x)=j)=1/n for each j
= f appears random

2. Values of f(x) are independent of each
other = f appears independent



Chain Hashing (5)

In addition, suppose further we can
compute f(x) in O(1) time ...

What will be the time for the checking?

[Can you see it is exactly asking about
the load in the Balls-and-Bins model?]

Firstly,
E[# names ina bin] = m/n



Chain Hashing (¢)

If n=m,
= Expected # names =1

+ Also, maximum # names in a bin is:
O(lInm/Inlnm)w.h.p.

=> Better than binary search i

=> Drawback: wasted space

For instance, if we use m bins for m items,
several bins will be empty ...



Approximate Membership

Suppose we how have a similar problem :
to maintain a password checker system
so that a user can tell if a certain
password is in the blacklist

=> Before a user updates the password
to w, we check if w is in the blacklist

Let m = # bad passwords in the blacklist



Approximate Membership

Using the previous ideas, we can either

Maintain sorted list:
= checking time: O(log m)

Find a good hash function:
= checking time: O(In m/In In m) w.h.p.
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Approximate Membership

Alternative scheme :

Target: To save space
Trade-off: Allow false positive errors

(meaning: we may say w is bad even if
it is not in the blacklist)

However, we will never say w is good if it
is in the blacklist
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Approximate Membership (2)

Idea: To represent each of the m bad
passwords with a short fingerprint

Then, when w arrives,

1. compute the fingerprint of w

2. If it matches fingerprints of any bad
passwords, we say w is in the list

3. Else, we say w is not in the list

Thus, the shorter the fingerprint, the more
likely that a false positive error occurs
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Approximate Membership (3)

In general, our problem is as follows:
Let S={sy s, ...5,} withs, € [1,U].

Assume we have a good hash function so
that each s; can be mapped randomly to a
short fingerprint of b bits long

Suppose we also allow
Pr(false positive error) <r

Question: What is min length of b?
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Approximate Membership (4)

With the given hash function,
for an item s' not in S, an item s;in S,

Pr(s’ and s; have different fingerprints)
=1-1/2b

= For anitem s not in S,

Pr(false positive error)
=1-(1-1/25)m > 1-em2°
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Approximate Membership (5)

Since we want the false positive error
probability to be at most r, we need

P> 1-em?2°

So, e™2®> 1-pr or -m/2°> In(l-r)
2> 2°>-m/In(1-r)

2> b2>log,(-m/In(1-r))

Thus, if ris a constant, b = Q( log m )
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Approximate Membership (6)

What if we choose b =2 logm?
In this case,
Pr(false positve error)
=1-(1-1/25)m
=1-(1-1/m2)m
<1/m
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Bloom Filters

Can we get more tradeoff between space (b)
and false positive error probability (r)?

A method, called Bloom Filter, is o prepare:
* an n-bit vector A[l..h] (initially all bits are 0)
* k independent good hash functions,
hy, h,, ..., h,,
each can map an element to [1,n]
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Bloom Filters (2)

Then, for each element s;inS,
1. Compute k hash values h(s;)
2. Mark corresponding bits A[h;(s;)] to 1

Later, to test if avalue sisin S,
1. Apply the k hash functions on s
2. Find the corresponding k bits in A
3. Ifall are 1, we conclude that sisin S
4. Else, we conclude that sisnotin S
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Bloom Filters (3)

Questions:

When can a Bloom filter make an error?
(1) Will it say s isin S when s is not in S?
(2) Will it say s is not in S when s isin S?

Answer. (1) Yes. (2) No.
= Only have false positive errors
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Bloom Filters (4)

The probability of false positive error
can be calculated as follows:

(recall: m=size of S, n=length of A)

First, in the desired Bloom filter,

Pr( a specific bit A[x]==0)

- ( 1- 1/n )kmz e-km/n = D
Next, we assume exactly a fraction of p
entriesin Ais O

= this assumption will be removed later



Bloom Filters (5)

Based on the assumption, we have
Pr(false positive error)

= (1-p)
= We should minimize the value
f - (1 _ p)k - (1 _ e—km/n)k

Question:
Should we use a large k? Or a small k?
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Bloom Filters (¢)

Suppose m and n are given. Observe that:

(1) False positive error occurs only if all
the corresponding k bits are 1

- if kis large, more difficult to occur
-~ Better to have large k

(2) If kis very large, the bit-vector A in
will be nearly all 1's |

- easy to have false positive error ...
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Bloom Filters (7)

First, fo minimize f < minimize In f
Let us find the optimal k by calculus:
Let g(k) = In f = k In (1 - ekm/n)
Differentiating g, we have

g' = In (1 - e*m/n) + kekn/n(m/n)/(1 - e-m/n)

> g =0 whenk-=(In2)(n/m)
which corresponds to a global minimum
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Bloom Filters (8)

When we choose the best k = (In 2) (n/m),
f - (1 _ e—km/n)k
= (1/2)
= (0.6185)vm

Remark 1: In practice, k must an integer, so we
cannot achieve the global min

2 Actual f will be slightly higher

Remark 2: If k=1, it is exactly the previous

fingerprint scheme
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Bloom Filters (9)

Question: What is space usage per item?

The space of the k hash functions should
be negligible

A Bloom filter uses n bits, and we have m
items =» n/m bits per item

Is Bloom Filter better than the previous
fingerprint scheme?
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Bloom Filters (10)

For fingerprint scheme,

constant false positive error probability
requires Q( log m ) bits per item ...

For Bloom filter,

already very effective if we have
constant bits per item

E.g., whenn/m = 8, kis around 5 or 6
= Pr(false positive error) ~ 0.021
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Bloom Filters (11)

We now remove the assumption that
exactly a fraction of p entriesin Ais O

In the actual case, the fraction of O is
equivalent to the fraction of empty bins
after km balls are thrown into n bins

(1) What is E[#entries with O balls] ?

(2) How to bound the actual fraction of O
is very close to p?
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Bloom Filters (12)

Answer:

(1) The expected number of entries with
O balls = n( 1- 1/n )km

(2) Let us use Poisson Approximation

Let p'=(1-1/n)km
Let X = number of O-entries
r = km = number of balls
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Bloom Filters (13)

Also, define indicator
X;=1 if j*™entry has O balls
X; =0 otherwise

2> X=X+ X, + ..+ X,

= Pr(|X - np'| > en in exact case)
< er/2Pp(|X - np'| > en in Poisson case)

= ert/2 Pr(|2;X; - np'| > &n in Poisson case)
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Bloom Filters (14)

In Poisson case, X's are mdependenT and
each of them has probabulu‘ry p' to be 1

In other words, in Poisson case,

X = sum of n independent Bernoulli trials
each with probability p' of success

= Bin(n, p)
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Bloom Filters (15)

Thus, we can apply Chernoff bound for
Bin(n, p') and obtain:

Pr( |X - np'| > en in exact case)

< er2 Pr( |X - np'| > ¢n in Poisson case)
= erl2 Pr( |Bin(n, p’) - np'| > ¢en)
< erl/2 g-ne2/3p < 0.00001 whennis large
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Bloom Filters (15)

Thus, when n is large, the actual fraction
of O, X/n, is very close to p’, w.h.p.

Also, recall: p'=(1-1/n )km
and p = e-km/n
so that p' '~ p

=> actual fraction of O is very close to p
= previous assumption is true w.h.p.
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Breaking Symmetry

Suppose n users run their programs on a
server and want to get the running times

In order to measure the time accurately,
they agree to use the server sequentially,
one program at a time

Of course, each user wants to be
scheduled as early as possible ...

Question: How can we decide a permutation
of the users quickly and fairly?
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Breaking Symmetry (2)

We can use hashing to help |

1. Create a hash function f that maps each
user to one of the 2° bins (i.e., hash a
user into a number between [1,2P])

2. Sort users based on their hash values

For this scheme to work, we do not want two
users to have the same hash value

=> this should happen w.h.p. when b is large
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Breaking Symmetry (3)
Assume that the hash function is good

(which appears random and independent)

=> Probability that a particular user receive
a hash value same as some other user is:

1- (1-1/2b)1 <(n-1)/2P
Thus, by union bound,
Pr(all users has distinct hash value)
>1-n(n-1)/2°
>1-1/n ..When b =3 logn
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Breaking Symmetry (4)

Advantage: Extremely flexible |

New user can join at any time, as long as
they do not have the same hash value as
the existing users

Related problem:

Selecting a leader from n people

= If we have a good hash function, we
can hash each user and select one
with smallest value to be the leader

In this case, what should b be? (Ex. 5.25)
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