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CS5314
Randomized Algorithms

Lecture 15: Balls, Bins, Random Graphs
(Hashing)
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•Study various hashing schemes

•Apply balls-and-bins model to analyze
their performances

Objectives
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• Suppose our library wants to maintain a
book inventory system so that a user can
search if a certain book is available
A Natural Method:
Keep a list of the names of the books

 When a user asks for a certain book,
we check if its name w is in the list

Chain Hashing
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• Assume each book name is of O(1) length
(say, 8 to 80 characters)

• Let m = # books in our library

• To speed up the checking process, we
store the m book names in sorted order

 checking w takes: O(log m) time

Chain Hashing (2)
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Another idea to speed up:
Create a hash function f that places the
m book names into n bins
 Name x is placed in Bin f(x)

• When w arrives, we compare w with all
the names in Bin f(w)

 Report found if w is in Bin f(w)

Chain Hashing (3)
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• Usually, we can find a good hash function
f, such that:

For a random name x,
1. Pr( f(x) = j ) = 1/n for each j
 f appears random

2. Values of f(x) are independent of each
other  f appears independent

Chain Hashing (4)
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• In addition, suppose further we can
compute f(x) in O(1) time …

• What will be the time for the checking?
[Can you see it is exactly asking about
the load in the Balls-and-Bins model?]

• Firstly,
E[# names in a bin] = m/n

Chain Hashing (5)
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• If n = m,
 Expected # names = 1

•Also, maximum # names in a bin is:
( ln m / ln ln m ) w.h.p.

 Better than binary search !!!
 Drawback: wasted space

For instance, if we use m bins for m items,
several bins will be empty …

Chain Hashing (6)
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• Suppose we now have a similar problem :
to maintain a password checker system
so that a user can tell if a certain
password is in the blacklist

 Before a user updates the password
to w, we check if w is in the blacklist

• Let m = # bad passwords in the blacklist

Approximate Membership
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Using the previous ideas, we can either

• Maintain sorted list:
 checking time: O(log m)

• Find a good hash function:
 checking time: O(ln m/ln ln m) w.h.p.

Approximate Membership
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Alternative scheme :

Target: To save space
Trade-off: Allow false positive errors

(meaning: we may say w is bad even if
it is not in the blacklist)

However, we will never say w is good if it
is in the blacklist

Approximate Membership
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Idea: To represent each of the m bad
passwords with a short fingerprint

Then, when w arrives,
1. compute the fingerprint of w
2. If it matches fingerprints of any bad

passwords, we say w is in the list
3. Else, we say w is not in the list

Thus, the shorter the fingerprint, the more
likely that a false positive error occurs

Approximate Membership (2)
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In general, our problem is as follows:
• Let S = { s1, s2, …, sm }, with si 2 [1,U] .
• Assume we have a good hash function so

that each si can be mapped randomly to a
short fingerprint of b bits long

• Suppose we also allow
Pr(false positive error) r

Question: What is min length of b?

Approximate Membership (3)
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With the given hash function,
for an item s’not in S, an item sj in S,
Pr(s’and sj have different fingerprints)
= 1 –1/2b

 For an item s’not in S,
Pr(false positive error)
= 1 - (1 –1/2b)m  1 –e-m/2b

Approximate Membership (4)
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Since we want the false positive error
probability to be at most r, we need

r  1 –e-m/2b

So, e-m/2b  1 –r, or -m/2b  ln (1 –r)
 2b  -m / ln (1 –r)
 b  log2 (-m / ln (1 –r))

Thus, if r is a constant, b = ( log m )

Approximate Membership (5)
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• What if we choose b = 2 log m ?
• In this case,

Pr(false positve error)
= 1 - (1 –1/2b)m

= 1 - (1 –1/m2)m

1/m

Approximate Membership (6)
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Can we get more tradeoff between space (b)
and false positive error probability (r)?

A method, called Bloom Filter, is to prepare:
•an n-bit vector A[1..n] (initially all bits are 0)

•k independent good hash functions,
h1, h2, …, hk,

each can map an element to [1,n]

Bloom Filters
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Then, for each element sj in S,
1. Compute k hash values hi(sj)
2. Mark corresponding bits A[hi(sj)] to 1

Later, to test if a value s is in S,
1. Apply the k hash functions on s
2. Find the corresponding k bits in A
3. If all are 1, we conclude that s is in S
4. Else, we conclude that s is not in S

Bloom Filters (2)
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Questions:
When can a Bloom filter make an error?

(1) Will it say s is in S when s is not in S?
(2) Will it say s is not in S when s is in S?

Answer. (1) Yes. (2) No.
 Only have false positive errors

Bloom Filters (3)
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• The probability of false positive error
can be calculated as follows:
(recall: m = size of S, n = length of A )

• First, in the desired Bloom filter,
Pr( a specific bit A[x] == 0 )
= ( 1- 1/n )km e-km/n = p

• Next, we assume exactly a fraction of p
entries in A is 0
 this assumption will be removed later

Bloom Filters (4)
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Based on the assumption, we have
Pr(false positive error)
= (1 - p)k

 We should minimize the value

f = (1 - p)k = (1 - e-km/n)k

Question:
Should we use a large k? Or a small k?

Bloom Filters (5)
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Suppose m and n are given. Observe that:

(1) False positive error occurs only if all
the corresponding k bits are 1
 if k is large, more difficult to occur
 Better to have large k

(2) If k is very large, the bit-vector A in
will be nearly all 1’s !
 easy to have false positive error …

Bloom Filters (6)
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First, to minimize f  minimize ln f

• Let us find the optimal k by calculus:

• Let g(k) = ln f = k ln (1 - e-km/n)

• Differentiating g, we have
g’= ln (1 - e-km/n) + ke-km/n(m/n)/(1 - e-km/n)

 g’= 0 when k = (ln 2) (n/m)
which corresponds to a global minimum

Bloom Filters (7)
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When we choose the best k = (ln 2) (n/m),
f = (1 - e-km/n)k

= (1/2)k

= (0.6185)n/m

Remark 1: In practice, k must an integer, so we
cannot achieve the global min
 Actual f will be slightly higher

Remark 2: If k = 1, it is exactly the previous
fingerprint scheme

Bloom Filters (8)
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Question: What is space usage per item?
• The space of the k hash functions should

be negligible

• A Bloom filter uses n bits, and we have m
items  n/m bits per item

Is Bloom Filter better than the previous
fingerprint scheme?

Bloom Filters (9)
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For fingerprint scheme,
constant false positive error probability
requires ( log m ) bits per item …

For Bloom filter,
already very effective if we have
constant bits per item

E.g., when n/m = 8, k is around 5 or 6
 Pr(false positive error) 0.021

Bloom Filters (10)
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• We now remove the assumption that
exactly a fraction of p entries in A is 0

• In the actual case, the fraction of 0 is
equivalent to the fraction of empty bins
after km balls are thrown into n bins

(1) What is E[#entries with 0 balls] ?

(2) How to bound the actual fraction of 0
is very close to p?

Bloom Filters (11)
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Answer:

(1) The expected number of entries with
0 balls = n( 1- 1/n )km

(2) Let us use Poisson Approximation

Let p’= ( 1- 1/n )km

Let X = number of 0-entries
r = km = number of balls

Bloom Filters (12)
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Also, define indicator
Xj = 1 if jth entry has 0 balls

Xj = 0 otherwise

 X = X1 + X2 + …+ Xn

 Pr(|X –np’| ¸ n in exact case)
· er1/2 Pr(|X –np’| ¸n in Poisson case)

= er1/2 Pr(|jXj –np’| ¸ n in Poisson case)

Bloom Filters (13)
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• In Poisson case, Xj’s are independent, and
each of them has probability p’to be 1

• In other words, in Poisson case,

X = sum of n independent Bernoulli trials
each with probability p’of success

= Bin(n, p’)

Bloom Filters (14)
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• Thus, we can apply Chernoff bound for
Bin(n, p’) and obtain:

Pr( |X –np’| ¸ n in exact case)

· er1/2 Pr( |X –np’| ¸ n in Poisson case)

= er1/2 Pr( |Bin(n, p’) –np’| ¸ n )

· er1/2 2e-n2/3p’· 0.00001 when n is large

Bloom Filters (15)
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• Thus, when n is large, the actual fraction
of 0, X/n, is very close to p’, w.h.p.

• Also, recall: p’= ( 1- 1/n )km

and p = e-km/n

so that p’p

 actual fraction of 0 is very close to p
 previous assumption is true w.h.p.

Bloom Filters (15)
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• Suppose n users run their programs on a
server and want to get the running times

• In order to measure the time accurately,
they agree to use the server sequentially,
one program at a time

• Of course, each user wants to be
scheduled as early as possible …

Question: How can we decide a permutation
of the users quickly and fairly?

Breaking Symmetry
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We can use hashing to help !
1. Create a hash function f that maps each

user to one of the 2b bins (i.e., hash a
user into a number between [1,2b])

2. Sort users based on their hash values

For this scheme to work, we do not want two
users to have the same hash value

 this should happen w.h.p. when b is large

Breaking Symmetry (2)
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Assume that the hash function is good
(which appears random and independent)

 Probability that a particular user receive
a hash value same as some other user is:

1 - (1 –1/2b)n-1 (n-1)/2b

Thus, by union bound,
Pr(all users has distinct hash value)
1 –n(n-1)/2b

1 –1/n …when b = 3 log n

Breaking Symmetry (3)
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Advantage: Extremely flexible !
New user can join at any time, as long as
they do not have the same hash value as
the existing users

Related problem:
Selecting a leader from n people
 If we have a good hash function, we

can hash each user and select one
with smallest value to be the leader

In this case, what should b be? (Ex. 5.25)

Breaking Symmetry (4)


