CS5314 Randomized Algorithms

Lecture 13: Balls, Bins, Random Graphs (Balls-and-Bins Model)

1

Objectives

- Balls-and-Bins Model
 - throwing m balls into n bins
 - can be applied in many practical situations,
 e.g., assigning jobs to servers
- Bounds on various scenario
 - E.g., maximum load, number of empty bins
- Poisson Distribution

Balls-and-Bins Model

• Suppose we throw m balls to n bins, independently and uniformly at random

Some interesting questions:

- 1. What will be the distribution of balls?
- 2. How many bins are empty?
- 3. How many balls in the fullest bin?(We call this number the maximum load)

Maximum Load

Theorem: Suppose we throw n balls into n bins independently and uniformly at random. Let L = maximum load Then, for sufficiently large n, Pr(L ≥ (3ln n)/(ln ln n)) ≤ 1/n

(Throughout the notes, we use $\ln x$ to denote $\log_e x$)

How to prove?

Maximum Load (Proof)

Let p = Pr(Bin 1 receives at least M balls) $\Rightarrow p = Pr(some set of M balls is in Bin 1)$ $\leq C_M^n (1/n)^M$... (why?)

Then, since $C_M^n(1/n)^M \leq 1/(M!)$... (why?) $M^M/(M!) \leq \sum_j (M^j)/j! = e^M$... (why?) we have:

 $p \leq (e/M)^{M}$

Maximum Load (Proof)

Let P = Pr(L \ge M) = Pr(some bin has M balls) \rightarrow P \le np \le n(e/M)^M ... (why?) By setting M = (3ln n) / (ln ln n), Pr(L \ge (3ln n) / (ln ln n)) \le n(e/M)^M

- \leq n((ln ln n) / (ln n))^M ... (why?)
- $= e^{\ln n} (e^{\ln \ln \ln n \ln \ln n})^{3\ln n/\ln \ln n}$
- $= e^{-2\ln n + o(\ln n)} \le 1/n$ (for large enough n)

Suppose we have $n=2^m$ integers to be sorted

We can sort these integers by Bucket Sort:

- 1. Create n buckets, B_0 , B_1 , ..., B_{n-1}
- 2. Put the integer into B_j , if its first m bits = binary representation of j
- 3. Sort each bucket using Bubble-Sort
- 4. Output the sorted integers in B_0 , then those in B_1 , then those in B_2 , and so on

Remark: Buckets = Bins, Integers = Balls

Suppose each integer is drawn independently and uniformly from [0,2^k) for some $k \ge m$

Question: What is the expected time for the previous Bucket Sort (assume Steps 1 and 2 are done in O(n) time)?

[Note: the expectation is over the random input]

Let X_j be the number of integers in B_j So, $X_j = Bin(n, 1/n)$

 Suppose the time to bubble-sort the bucket B_j is cX_j² for some constant c

Then, expected time

- = $E[\Sigma cX_j^2] + O(n) = \Sigma E[cX_j^2] + O(n)$
- $= cn E[X_j^2] + O(n)$

Since for X = Bin(n,p), its second moment is

 $E[X^{2}] = (E[X])^{2} + Var[X]$ = (np)² + np (1-p)

So, $E[X_j^2] = (n(1/n))^2 + n(1/n)(1-1/n) < 2$

and we have: expected time < 2cn + O(n) = O(n)

Fraction of Empty Bins

- Next, we consider the fraction of empty bins, when we throw m balls into n bins uniformly and independently
- Since each ball hits Bin 1 with probability 1/n, we have

Pr(Bin 1 is empty) = $(1 - (1/n))^m \approx e^{-m/n}$

Fraction of Empty Bins if Bin j is empty Let $X_i = 1$ $X_{i} = 0$ otherwise Let X = total number of empty bins $= X_1 + X_2 + ... + X_n$ Then, $E[X] = E[X_1 + X_2 + ... + X_n]$ $\approx n e^{-m/n}$

→ expected fraction of empty bins $\approx e^{-m/n}$

Fraction of Bins with r Balls

How about the expected fraction of bins with exactly r balls (for constant r)?

• Using similar approach, we compute Pr(Bin 1 has exactly r balls), which is

 $C_r^m (1/n)^r (1-(1/n))^{m-r}$

 \approx (m^r/r!) (1/n)^r e^{-m/n} when m, n \gg r

 $= e^{-m/n} (m/n)^{r} / r! = desired fraction$

Poisson Distribution

This leads to the following definition:

Definition:

A discrete Poisson random variable X with parameter μ is given by the following probability distribution for r = 0,1,2,...:

$$Pr(X = r) = e^{-\mu} \mu^{r} / r!$$

Remark: Poisson RV ≠ Poisson trial !!!

Poisson Distribution

Before we proceed, let us verify that for the previous probability distribution, Pr(X = 0) + Pr(X = 1) + Pr(X = 2) + ... = 1

By definition:

$$\sum_{r=0 \text{ to } \infty} \Pr(X = r)$$

=
$$\sum_{r=0 \text{ to } \infty} e^{-\mu} \mu^r / r!$$

 $= e^{-\mu} \sum_{r=0 \text{ to } \infty} \mu^r / r! = e^{-\mu} e^{\mu} = 1$

Expectation of Poisson RV

Theorem: Let X be a Poisson random variable with parameter μ . Then, E[X] = μ

Proof: $E[X] = \sum_{r=0 \text{ to } \infty} r \Pr(X = r)$ $= \sum_{r=1 \text{ to } \infty} r \Pr(X = r)$ $= \sum_{r=1 \text{ to } \infty} r e^{-\mu} \mu^r / r!$ $= \mu \sum_{r=1 \text{ to } \infty} e^{-\mu} \mu^{r-1} / (r-1)! = \mu$...(why?)

Sum of Independent Poisson RV

Theorem: Let $X_1, X_2, ..., X_n$ be independent Poisson random variables with parameters $\mu_1, \mu_2, ..., \mu_n$. Let $X = X_1 + X_2 + ... + X_n$ Then, X is a Poisson random variable with parameter $\mu = \mu_1 + \mu_2 + ... + \mu_n$.

How to prove? First prove two RVs. Then general case follows by induction

Sum of Independent Poisson RV

- **Proof:** Consider $X = X_1 + X_2$
- Then, $Pr(X = r) = Pr(X_1 + X_2 = r)$
- $= \sum_{k=0 \text{ to } r} \Pr((X_1 = k) \cap (X_2 = r-k))$
- = $\sum_{k=0 \text{ to } r} (e^{-\mu_1} \mu_1^k / k!) (e^{-\mu_2} \mu_2^{r-k} / (r-k)!) ... (why?)$
- = $(e^{-(\mu_1 + \mu_2)} / r!) \sum_{k=0 \text{ to } r} C_k^r \mu_1^k \mu_2^{r-k} \dots (why?)$
- = $(e^{-(\mu_1 + \mu_2)} / r!) (\mu_1 + \mu_2)^r$
- = $e^{-(\mu_1 + \mu_2)} (\mu_1 + \mu_2)^r / r!$

MGF of Poisson RV

Theorem: Let X be a Poisson random variables with parameter μ Then, the MGF for X is

 $M_{X}(t) = e^{\mu(e^{t}-1)}$

How to prove?

Proof

For any t, $M_{x}(t) = E[e^{tX}]$ = $\sum_{r=0 \text{ to } \infty} e^{tr} \Pr(X = r)$ = $\sum_{r=0 \text{ to } \infty} e^{tr} (e^{-\mu} \mu^r / r!)$ $= e^{-\mu} \sum_{r=0 \text{ to } \infty} (e^{\dagger} \mu)^{r} / r!$ $= e^{-\mu} e^{e^{\dagger}\mu}$ $= e^{\mu(e^{\dagger}-1)}$

Chernoff Bound for Poisson RV

Theorem: Let Y be a Poisson random variables with parameter μ Then, (1) If $x > \mu$, $Pr(Y \ge x) \le e^{-\mu}(e\mu)^{x}/x^{x}$

(2) If $\mathbf{x} < \mu$, $\Pr(\mathbf{Y} \le \mathbf{x}) \le e^{-\mu} (e\mu)^{\mathbf{x}} / \mathbf{x}^{\mathbf{x}}$

How to prove?

Poisson RV vs Binomial RV

- When throwing m balls to n bins, the number of balls in a certain bin is a Binomial RV Bin(m, 1/n)
- However, we see that Bin(m, 1/n) is close to a Poisson RV, with parameter m/n
- In fact, there is a very strong relation between the Poisson and the Binomial distribution ...

Limit of Binomial Distribution

Theorem: Let X_n be a Binomial random variable with parameters n and p, where p is a function of n with $\lim_{n\to\infty} np = \lambda$ for some constant λ Then, for any fixed r $\lim_{n\to\infty} \Pr(X_n = r) = e^{-\lambda} \lambda^r / r!$

How to prove?

Proof

• We will assume the following inequality: For $|x| \le 1$, $e^{x}(1-x^{2}) \le 1+x \le e^{x}$

(The proof is left as an exercise)

Firstly,

$$Pr(X_n = r) = C_r^n p^r (1-p)^{n-r}$$

 $\leq (n^r/r!) p^r (1-p)^n (1-p)^{-r}$
 $\leq ((np)^r/r!) e^{-np} (1-p)^{-r}$

Proof

Also, $Pr(X_{n} = r) \ge ((n-r+1)^{r} / r!) p^{r} (1-p)^{n-r}$ $\ge (((n-r+1)p)^{r} / r!) (1-p)^{n}$ $\ge (((n-r+1)p)^{r} / r!) e^{-np} (1-p^{2})^{n}$ $\ge (((n-r+1)p)^{r} / r!) e^{-np} (1-np^{2})$

Now, by taking limits on the two inequalities, we get the desired bound