
1

CS5314
Randomized Algorithms

Lecture 13: Balls, Bins, Random Graphs
(Balls-and-Bins Model)
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•Balls-and-Bins Model
–throwing m balls into n bins
–can be applied in many practical situations,

e.g., assigning jobs to servers

•Bounds on various scenario
–E.g., maximum load, number of empty bins

•Poisson Distribution

Objectives
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• Suppose we throw m balls to n bins,
independently and uniformly at random

Some interesting questions:
1. What will be the distribution of balls?
2. How many bins are empty?
3. How many balls in the fullest bin?

(We call this number the maximum load)

Balls-and-Bins Model
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Maximum Load

Theorem: Suppose we throw n balls into n
bins independently and uniformly at random.
Let L = maximum load
Then, for sufficiently large n,

Pr(L (3ln n)/(ln ln n)) 1/n

(Throughout the notes, we use ln x to denote loge x)

How to prove?
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Let p = Pr( Bin 1 receives at least M balls )
 p = Pr( some set of M balls is in Bin 1 )

 (1/n)M …(why?)

Then, since
(1/n)M 1/(M!) …(why?)

MM/(M!) j (Mj)/j! = eM …(why?)

we have:
p (e/M)M

Maximum Load (Proof)

n
MC

n
MC
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Let P = Pr(L M) = Pr(some bin has M balls)
 P np n(e/M)M …(why?)

By setting M = (3ln n) / (ln ln n),
Pr(L (3ln n) / (ln ln n) )

n(e/M)M

n( (ln ln n) / (ln n) )M …(why?)

= eln n (eln ln ln n –ln ln n)3ln n/ln ln n

= e-2ln n + o(ln n) 1/n (for large enough n)

Maximum Load (Proof)
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Suppose we have n=2m integers to be sorted

We can sort these integers by Bucket Sort:
1. Create n buckets, B0, B1, …, Bn-1

2. Put the integer into Bj, if its first m bits
= binary representation of j

3. Sort each bucket using Bubble-Sort
4. Output the sorted integers in B0, then

those in B1, then those in B2, and so on

Remark: Buckets = Bins, Integers = Balls

Bucket Sort
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Suppose each integer is drawn independently
and uniformly from [0,2k) for some k m

Question:
What is the expected time for the previous

Bucket Sort (assume Steps 1 and 2 are
done in O(n) time)?

[Note: the expectation is over the random input]

Bucket Sort
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Let Xj be the number of integers in Bj

So, Xj = Bin(n, 1/n)

• Suppose the time to bubble-sort the
bucket Bj is cXj

2 for some constant c

Then, expected time

= E[cXj
2] + O(n) = E[cXj

2] + O(n)

= cn E[Xj
2] + O(n)

Bucket Sort



10

Since for X = Bin(n,p), its second moment is

E[X2] = (E[X])2 + Var[X]
= (np)2 + np (1-p)

So, E[Xj
2] = (n(1/n))2 + n(1/n)(1-1/n) 2

and we have:
expected time 2cn + O(n) = O(n)

Bucket Sort
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• Next, we consider the fraction of empty
bins, when we throw m balls into n bins
uniformly and independently

• Since each ball hits Bin 1 with probability
1/n, we have

Pr(Bin 1 is empty) = (1- (1/n))m

e-m/n

Fraction of Empty Bins
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Let Xj = 1 if Bin j is empty
Xj = 0 otherwise

Let X = total number of empty bins
= X1 + X2 + …+ Xn

Then, E[X] = E[X1 + X2 + …+ Xn]
n e-m/n

 expected fraction of empty bins e-m/n

Fraction of Empty Bins
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How about the expected fraction of bins
with exactly r balls (for constant r)?

• Using similar approach, we compute
Pr(Bin 1 has exactly r balls), which is

(1/n)r(1- (1/n))m-r

(mr/r!) (1/n)r e-m/n when m, n À r

= e-m/n (m/n)r /r! = desired fraction

Fraction of Bins with r Balls

m
rC
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This leads to the following definition:

Poisson Distribution

Definition:
A discrete Poisson random variable X with
parameter is given by the following
probability distribution for r = 0,1,2,…:

Pr(X = r) = e-r /r!

Remark: Poisson RV Poisson trial !!!
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Before we proceed, let us verify that for
the previous probability distribution,
Pr(X = 0) + Pr(X = 1) + Pr(X = 2) + …= 1

By definition:

r=0 to 1 Pr(X = r)

= r=0 to 1 e-r /r!

= e-r=0 to 1 r /r! = e-e= 1

Poisson Distribution
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Expectation of Poisson RV
Theorem: Let X be a Poisson random

variable with parameter . Then,
E[X] = 

Proof: E[X] = r=0 to 1 r Pr(X = r)

= r=1 to 1 r Pr(X = r)

= r=1 to 1 r e-r /r!

= r=1 to 1 e-r-1 /(r-1)! =  …(why?)
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Sum of Independent Poisson RV
Theorem: Let X1, X2, …, Xn be independent

Poisson random variables with
parameters 1, 2, …, n.
Let X = X1 + X2 + …+ Xn

Then, X is a Poisson random variable with
parameter = 1 + 2 + …+ n.

How to prove? First prove two RVs. Then
general case follows by induction
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Proof: Consider X = X1 + X2

Then, Pr(X = r) = Pr(X1 + X2 = r)
= k=0 to r Pr((X1 = k) \ (X2 = r-k))

= k=0 to r (e-1 k /k!) (e-2 r-k /(r-k)!) …(why?)

= (e-(1+2) /r!) k=0 to r k r-k …(why?)

= (e-(1+2) /r!) (+)r

= e-(1+2) (+)r /r!

Sum of Independent Poisson RV

r
kC
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MGF of Poisson RV

Theorem: Let X be a Poisson random
variables with parameter 
Then, the MGF for X is

MX(t) = e(et-1)

How to prove?
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For any t,
MX(t) = E[etX]

= r=0 to 1 etr Pr(X = r)

= r=0 to 1 etr (e-r /r!)

= e-r=0 to 1 (et)r /r!

= e-eet

= e(et-1)

Proof
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Chernoff Bound for Poisson RV

Theorem: Let Y be a Poisson random
variables with parameter 

Then,
(1) If x , Pr(Y x) e(e)x /xx

(2) If x , Pr(Y x) e(e)x /xx

How to prove?
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• When throwing m balls to n bins, the
number of balls in a certain bin is a
Binomial RV Bin(m, 1/n)

• However, we see that Bin(m, 1/n) is close
to a Poisson RV, with parameter m/n

• In fact, there is a very strong relation
between the Poisson and the Binomial
distribution …

Poisson RV vs Binomial RV
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Limit of Binomial Distribution

Theorem: Let Xn be a Binomial random
variable with parameters n and p, where
p is a function of n with limn1 np = 
for some constant 

Then, for any fixed r
limn1 Pr(Xn = r) = er /r!

How to prove?
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• We will assume the following inequality:
For |x| 1, ex(1-x2) 1+x ex

(The proof is left as an exercise)

Firstly,
Pr(Xn = r) = pr (1-p)n-r

 (nr/r!) pr (1-p)n (1-p)-r

 ( (np)r/r! ) e-np (1-p)-r

Proof

n
rC
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Also,
Pr(Xn = r) ((n-r+1)r /r!) pr (1-p)n-r

( ((n-r+1)p)r /r! ) (1-p)n

( ((n-r+1)p)r /r! ) e-np (1-p2)n

( ((n-r+1)p)r /r! ) e-np (1-np2)

Now, by taking limits on the two inequalities,
we get the desired bound

Proof


