CSbH314
Randomized Algorithms

Lecture 12: Chernoff Bounds
(More Application)



Objectives

» Parameter Estimation
* Chernoff bounds of some special RVs

» Set Balancing



Parameter Estimation

Suppose we want to know the probability
that a person in Taiwan has a particular
gene mutated

Given a DNA sample, a lab test can check
if there is a mutation

However, the test is expensive

Can we obtain a "relatively” reliable
estimate based on small # of samples ?
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Parameter Estimation

Let p = the unknown probability that we
want to estimate (p == parameter)

Assume we have n samples.

After the lab test, let X be the number
of samples that contain mutations

By setting q = X/n, we can treat q as an
estimate of p

Idea: whennis large, q "should be" very
close to p



Parameter Estimation

Some possible questions we may ask:

1. How many samples should we use so that
the unknown p is 99.9% likely to be
within q £ 0.001?

2. If we just have 1000 samples. What is
the probability that p is within g £ 0.001?

3. If we now have 5000 samples. What
should be the value of 6 so that we can
say at least 85% of time p is within g + 5?
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Parameter Estimation

We define the concept of confidence as
follows:

If Pr( pis not withing+5)< vy,

we say p is within the interval [g-5, q+3]
with confidence 1 -y

Common Question:
Can we derive a relationship for n, 8, and y?
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Parameter Estimation

Firstly, X is actually a binomial random
variable Bin(n,p) = E[X]=np

Now, suppose that p is not withinq + 5
This implies that either:
(case 1) p<q-3

So, ng>n(p+38)=> X >E[X](1+ (8/p))
(case 2) p>q+d

So, ng<n(p-3)=> X< E[X]1-(8/p))



So,

Parameter Estimation

Pr( p not withing =3 )
Pr(X > E[X](1 + (8/p)) )
+ Pr(X < E[X](1 - (3/p)) )

< e'nP(S/P)2/3 + e—np(S/p)Z/Z

= o 3%/(3p) 4 o-N5%/(2p)

< e-n62/3 + e-n62/2



Parameter Estimation

By setting y = e™°/3 + e°/2 we thus have
Pr( p is not withing =5 ) < v

=> we have a relationship for n, 5, and v lll



Chernoff Bounds for Some
Other RVs

We shall look at two simple examples:

1. Sum of RVs, each RV has value +1 or -1
with equal probability 0.5

2. Bin(n,0.5) :

This is a special case of Sum of Poisson,
and we will give tighter bounds than the
ones in Lecture 11 (Page 13 and Page 19)
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Sum of +1/-1 Random Variables

Theorem: Let X;, X,, ..., X, be independent
random variables such that

Pr(X.=+1)=Pr(X. =-1)=05
LeT X - X1+X2+ +Xn.
Then, for all R > 0,

Pr(X > R) < eR®/(2n)

How to prove?

11



Sum of +1/-1 Random Variables

To apply Chernoff bound, let us obtain the
Moment Generating Function of X

Let M, be the MGF of X, and
My be the MGF of X;

Since X.'s are independent, we have

My (1) =11 My (1) .. (why?)
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Sum of +1/-1 Random Variables

Question: What is Mxi(’r)?
By definition,
My (1) = E[e™]
=05et®) + 0.5 efCD)
= Zk -0 t2k/(2k)! (Taylor series)

< oo (12/2)K/Kl (why?)

2
= et™/2 (Taylor series)
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Sum of +1/-1 Random Variables

So, My(1) = T My (1) < erv2

Thus, for any t > 0,
Pr(X > R) = Pr(etX > e'R)
< E[ZTX] / efR
My (T) / e

e‘rzn/Z 4R

VAL |
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Sum of +1/-1 Random Variables

By calculus,
et*n/2-1R ig minimized when t = R/n
Substituting t = R/n to previous inequality:

Pr(X > R) < eR/@n

Remark: By symmetry, we can show that
Pr(X < -R) < eR*/(@2n
So, we have:
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Sum of +1/-1 Random Variables

Corollary: Let X, X,, ..., X, be independent
random variables such that

Pr(X.=+1)=Pr(X. =-1)=05
LeT X - X1+X2+ +Xn.
Then, for all R > 0,

Pr(|X| = R) < 2e-R*/(@n
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Example: Set Balancing

» Suppose we have a group of m students

+ We try to classify them by checking
whether they have a particular feature

or not
+ E.g., Feature 1: Good at Baseball ?

Feature 2: Good at Maths ?
Feature 3: Well-behaved ?
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Example: Set Balancing

Let n be the number of features

One day, your boss (the headmaster) gives
you a difficult task: Can you try to divide
the m students into two groups G, and G,
such that

for each Kk,
# of students with Feature k in G,
~ # of students with Feature k in G,
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Example: Set Balancing

Most likely, we cannot find a partition such
that for each k,

# of students with Feature k in G,

is exactly equal to
# of students with Feature k in G,

However, we can target to find a partition
so as to minimize

max, { difference in # for Feature k }
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Example: Set Balancing

Formally, we want to find a way of
"partition”, described by B, as follows:

Given an n x m matrix A, all entries are
either O or 1,

find an m x 1 vector B, all entries are
either +1 or -1, such that

|AB||, = max, [(AB)l
IS minimized
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Example: Set Balancing

Yet, we are very lazy... So, we don't want to
try all possible partitions ...

("0” We can try to get a random partition,
and fool our boss that this is the best ...)

(@@" However, we don't want the result to
look very bad... Will it be very bad?

Note: In the worst case,
the difference will be ®(m) )
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Set Balancing

Theorem: For a random m x 1 vector B such
that each entry is chosen with equal
probability from +1 and -1,

Pr(||AB||. >y 4mlog, n) <2/n

How to prove?
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Proof

Let us examine a particular row, say k, of A
Suppose the there are j ones in row k

Case 1. j < (4m log, n)°>
Then, |(AB), | < (4m log, n)°> .. (why?)

Case 2: j > (4m log, n)°>

Then, these j ones each has equal chance
of contributing +1 or -1 to the sum (AB),
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Proof [Case 2 (cont.)]
By setting R = (4m log, n)°>,
Pr(|(AB),| = R) < 2eR*/@)

_ Ze(-4m log, n)/2j

< Ze(-4m log, n)/2m

= 2/n?
Then, by union bound,

Pr(||AB]|.. = R) < 2. Pr(|(AB),| = R) < 2/n

24



Tail of Bin(n,0.5)

Theorem: Let Y,, Y,, .., Y, be independent
random variables such that

Pr(Y. = 1) = Pr(Y.= 0)= 0.5

Let Y = Y+Y,+ .. +Y and u = E[Y] = n/2.
Then,
(1) foralla>0,
Pr(Y > u+a) < e/
(2) forall 56> 0,
Pr(Y > (1+ §) p) < e v
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Tail of Bin(n,0.5)

Let X;, X5, ..., X, be independent random
variables such that

Pr(X.=+1)=Pr(X. =-1)=05
2> Y.=05X+05

Let X = X+Xo+ .. +X
Then,
Y=0bX+n/2=05X+pn
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Tail of Bin(n,0.5)

In other words,
Pr(Y > u+a)=Pr(X >2a) .. (why?)

By the previous theorem on Sum of +1/-1
random variables, we have

Pr(Y > p+a) = Pr(X > 2a)
< e-(20)%/(2n)

- 6'2“2/“ .. (proof of (1) done)
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Tail of Bin(n,0.5)

Next, we set a = 6

Then,
Pr(Y > (1+8) n) = Pr(Y > p + a)
< e-Zaz/n
- e-Z(Su)Z/n

2 2
= @ 28°u%/(2w) since u=n/2

= 3'52M

.. which completes the proof of (2).
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Head of Bin(n,0.5)

Theorem: Let Y,, Y,, .., Y, be independent
random variables such that

Pr(Y. = 1) = Pr(Y.= 0)= 0.5

Let Y = Y+Y,+ .. +Y, and p = E[Y] = n/2.
Then,

(1) forall O<a<yp,

Pr(Y <p-a) < e2e®/n
(2) forall 0<d<1,

Pr(Y < (1-8) pn) < e w°
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