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CS5314
Randomized Algorithms

Lecture 12: Chernoff Bounds
(More Application)
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•Parameter Estimation

•Chernoff bounds of some special RVs

•Set Balancing

Objectives
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• Suppose we want to know the probability
that a person in Taiwan has a particular
gene mutated

• Given a DNA sample, a lab test can check
if there is a mutation

• However, the test is expensive

Can we obtain a “relatively”reliable
estimate based on small # of samples ?

Parameter Estimation
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Let p = the unknown probability that we
want to estimate (p == parameter)

Assume we have n samples.
• After the lab test, let X be the number

of samples that contain mutations
• By setting q = X/n, we can treat q as an

estimate of p
Idea: when n is large, q “should be”very

close to p

Parameter Estimation
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Some possible questions we may ask:
1. How many samples should we use so that

the unknown p is 99.9% likely to be
within q 0.001?

2. If we just have 1000 samples. What is
the probability that p is within q 0.001?

3. If we now have 5000 samples. What
should be the value of so that we can
say at least 85% of time p is within q ?

Parameter Estimation
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We define the concept of confidence as
follows:

If Pr( p is not within q ) ,

we say p is within the interval [q-, q+]
with confidence 1 - 

Common Question:
Can we derive a relationship for n, , and ?

Parameter Estimation
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Firstly, X is actually a binomial random
variable Bin(n,p)  E[X] = np

Now, suppose that p is not within q 
This implies that either:
(case 1) p q - 

So, nq n(p + )  X E[X](1 + (/p))
(case 2) p q + 

So, nq n(p - )  X E[X](1 - (/p))

Parameter Estimation
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So,
Pr( p not within q )

= Pr(X E[X](1 + (/p)) )
+ Pr(X E[X](1 - (/p)) )

 e-np(/p)2/3 + e-np(/p)2/2

= e-n2/(3p) + e-n2/(2p)

 e-n2/3 + e-n2/2

Parameter Estimation
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By setting = e-n2/3 + e-n2/2, we thus have
Pr( p is not within q ) 

 we have a relationship for n, , and !!!

Parameter Estimation
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Chernoff Bounds for Some
Other RVs

We shall look at two simple examples:

1. Sum of RVs, each RV has value +1 or –1
with equal probability 0.5

2. Bin(n,0.5) :
This is a special case of Sum of Poisson,
and we will give tighter bounds than the
ones in Lecture 11 (Page 13 and Page 19)
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Sum of +1/-1 Random Variables

Theorem: Let X1, X2, …, Xn be independent
random variables such that
Pr( Xi = +1 ) = Pr( Xi = -1 ) = 0.5

Let X = X1+X2+ …+Xn.

Then, for all R 0,

Pr(X R) e-R2/(2n)

How to prove?
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To apply Chernoff bound, let us obtain the
Moment Generating Function of X

Let MX be the MGF of X, and
MXi

be the MGF of Xi

Since Xi’s are independent, we have

MX(t) = i MXi
(t) …(why?)

Sum of +1/-1 Random Variables
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Question: What is MXi
(t)?

By definition,
MXi

(t) = E[etXi]
= 0.5 et(1) + 0.5 et(-1)

= k ¸ 0 t2k/(2k)! (Taylor series)

k ¸ 0 (t2/2)k/k! (why?)

= et2/2 (Taylor series)

Sum of +1/-1 Random Variables
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So, MX(t) = i MXi
(t) et2n/2

Thus, for any t 0,
Pr(X R) = Pr(etX etR)

E[etX] / etR

= MX(t) / etR

 et2n/2 - tR

Sum of +1/-1 Random Variables
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By calculus,
et2n/2 –tR is minimized when t = R/n

Substituting t = R/n to previous inequality:

Pr(X R) e-R2/(2n)

Remark: By symmetry, we can show that
Pr(X -R) e-R2/(2n)

So, we have:

Sum of +1/-1 Random Variables
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Sum of +1/-1 Random Variables

Corollary: Let X1, X2, …, Xn be independent
random variables such that
Pr( Xi = +1 ) = Pr( Xi = -1 ) = 0.5

Let X = X1+X2+ …+Xn.

Then, for all R 0,

Pr(|X| R) 2e-R2/(2n)
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Example: Set Balancing

•Suppose we have a group of m students
•We try to classify them by checking

whether they have a particular feature
or not

•E.g., Feature 1: Good at Baseball ?
Feature 2: Good at Maths ?
Feature 3: Well-behaved ?

…
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Example: Set Balancing

Let n be the number of features

One day, your boss (the headmaster) gives
you a difficult task: Can you try to divide
the m students into two groups G1 and G2,
such that
for each k,

# of students with Feature k in G1

# of students with Feature k in G2
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Example: Set Balancing
Most likely, we cannot find a partition such

that for each k,
# of students with Feature k in G1

is exactly equal to
# of students with Feature k in G2

However, we can target to find a partition
so as to minimize
maxk { difference in # for Feature k }
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• Formally, we want to find a way of
“partition”, described by B, as follows:

Given an n x m matrix A, all entries are
either 0 or 1,
find an m x 1 vector B, all entries are
either +1 or –1, such that

kABk1 = maxk |(AB)k|

is minimized

Example: Set Balancing
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Yet, we are very lazy…So, we don’t want to
try all possible partitions …

(^o^ We can try to get a random partition,
and fool our boss that this is the best …)

(@@”However, we don’t want the result to
look very bad… Will it be very bad?
Note: In the worst case,

the difference will be (m) )

Example: Set Balancing
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Set Balancing

Theorem: For a random m x 1 vector B such
that each entry is chosen with equal
probability from +1 and –1,

Pr(kABk1  4m loge n ) 2/n

How to prove?
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Let us examine a particular row, say k, of A
Suppose the there are j ones in row k

Case 1: j (4m loge n)0.5

Then, |(AB)k|(4m loge n)0.5 …(why?)

Case 2: j (4m loge n)0.5

Then, these j ones each has equal chance
of contributing +1 or –1 to the sum (AB)k

Proof
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By setting R = (4m loge n)0.5,

Pr(|(AB)k| R) 2e-R2/(2j)

= 2e(-4m loge n)/2j

2e(-4m loge n)/2m

= 2/n2

Then, by union bound,

Pr(kABk1 R) k Pr(|(AB)k| R) 2/n

Proof [Case 2 (cont.)]
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Tail of Bin(n,0.5)
Theorem: Let Y1, Y2, …, Yn be independent

random variables such that
Pr(Yi = 1) = Pr(Yi = 0) = 0.5

Let Y = Y1+Y2+ …+Yn and = E[Y] = n/2.
Then,

(1) for all a 0,
Pr(Y + a) e-2a2/n

(2) for all 0,
Pr(Y (1+ ) ) e- 2
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Let X1, X2, …, Xn be independent random
variables such that
Pr( Xi = +1 ) = Pr( Xi = -1 ) = 0.5

 Yi = 0.5 Xi + 0.5

Let X = X1+X2+ …+Xn.
Then,

Y = 0.5X + n/2 = 0.5X + 

Tail of Bin(n,0.5)
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In other words,
Pr(Y + a) = Pr(X 2a) …(why?)

By the previous theorem on Sum of +1/-1
random variables, we have

Pr(Y + a) = Pr(X 2a)
e-(2a)2/(2n)

= e-2a2/n …(proof of (1) done)

Tail of Bin(n,0.5)
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Next, we set a = 
Then,

Pr(Y (1+ ) ) = Pr(Y + a)
e-2a2/n

= e-2()2/n

= e-222/(2) …since = n/2

= e-2

…which completes the proof of (2).

Tail of Bin(n,0.5)
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Head of Bin(n,0.5)
Theorem: Let Y1, Y2, …, Yn be independent

random variables such that
Pr(Yi = 1) = Pr(Yi = 0) = 0.5

Let Y = Y1+Y2+ …+Yn and = E[Y] = n/2.
Then,

(1) for all 0 a ,
Pr(Y - a) e-2a2/n

(2) for all 0 1,
Pr(Y (1-) ) e- 2


