CS5314 Randomized Algorithms

Lecture 10: Chernoff Bounds (Introduction)

1

Objectives

- Chernoff bounds
 - Based on all the moments for bounding tail distribution (such as $Pr(X \ge a)$)
 - more powerful than Markov (based on E[X]) and Chebyshev (based on E[X]) and E[X²])
- Moment generating function

Moment Generating Function

Definition: The moment generating function (MGF) of a random variable X is defined as

 $M_{X}(t) = E[e^{tX}]$

Recall: E[X^k] is called the kth moment of X The MGF is a special function that "captures" all the moments of X

Moment Generating Function

Theorem:

Let X be a random variable with MGF $M_{X}(t)$

and assume that it is legal to exchange expectation and differentiation operands in calculation **.

Then, for all n > 1, E[Xⁿ] = M_X⁽ⁿ⁾(0),

where $M_X^{(n)}(0) = n$ th derivative of $M_X(t)$ evaluated at t = 0

** The above assumption is not generally true. However, it is true for the random variables we study

 $M_{X}^{(n)}(\dagger) = E[X^{n}e^{\dagger X}] \rightarrow M_{X}^{(n)}(0) = E[X^{n}]$

$$M_{X}^{(1)}(\dagger) = \frac{d}{dt} (E[e^{\dagger \times}]) = E[\frac{d}{dt} (e^{\dagger \times})]$$
$$= E[Xe^{\dagger \times}]$$
$$M_{X}^{(2)}(\dagger) = \frac{d}{dt} (E[Xe^{\dagger \times}]) = E[\frac{d}{dt} (Xe^{\dagger \times})]$$
$$= E[X^{2}e^{\dagger \times}]$$

Proof

Example

Let X = Geo(p)

Questions:

- 1. What is E[e^{+X}]?
- 2. What is $M_{\chi}^{(1)}(t)$? What is E[X]?
- 3. What is $M_X^{(2)}(t)$? What is $E[X^2]$?
- 4. What is Var[X]?

Equality of MGF

Theorem:

Let X and Y be two random variables. If there exists d > 0 such that $M_X(t) = M_y(t)$ for all t in [-d,d], then X and Y have the same distribution

Proof: omitted (out of scope) ...

MGF for Sum of Independent RV

Theorem: If X and Y are two independent random variables, then $M_{X+Y}(t) = M_X(t) M_Y(t)$

Proof: $M_{X+Y}(t) = E[e^{t(X+Y)}]$ $= E[e^{tX} e^{tY}]$ $= E[e^{tX}] E[e^{tY}]$... (why?) $= M_X(t) M_Y(t)$

Remark

Suppose that we know X and Y are two independent random variables, and we have computed $M_X(t)$ and $M_y(t)$

One day, we find that $M_X(t) M_y(t)$ is an MGF for some random variable Z

What does that imply?

Chernoff Bounds

How to prove?

Proof

(i) For t > 0, $Pr(X \ge a) = Pr(e^{tX} \ge e^{ta}) \dots (why?)$ $\leq E[e^{tX}] / e^{ta} \dots (why?)$

Thus, $Pr(X \ge a) \le min_{t>0} E[e^{tX}] / e^{ta}$...(why?)

(ii) Similar proof