CS5314 RANDOMIZED ALGORITHMS

Homework 4

Due: 1:10 pm, December 29, 2009 (before class)

- 1. Let G be a random graph drawn from the $G_{n,p}$ model.
 - (a) (10%) What is the expected number of 5-clique in G?
 - (b) (10%) What is the expected number of 5-cycle in G?
- 2. Suppose we have a set of n vectors, v_1, v_2, \ldots, v_n , in R^m . Each vector is of unit-length, i.e., $||v_i|| = 1$ for all i. In this question, we want to show that, there exists a set of values, $\rho_1, \rho_2, \ldots, \rho_n$, each $\rho_i \in \{-1, +1\}$, such that

$$\|\rho_1 v_1 + \rho_2 v_2 + \dots + \rho_n v_n\| \le \sqrt{n}$$

Intuitively, if we are allowed to "reflect" each v_i as we wish (i.e., by replacing v_i by $-v_i$), then it is possible that the vector formed by the sum of the n vectors is at most \sqrt{n} long.

(a) (10%) Let $V = \rho_1 v_1 + \rho_2 v_2 + \cdots + \rho_n v_n$, and recall that

$$||V||^2 = V \cdot V = \sum_{i,j} \rho_i \rho_j v_i \cdot v_j.$$

Suppose that each ρ_i is chosen uniformly at random to be -1 or +1. Show that

$$\mathbf{E}[\|V\|^2] = n.$$

Hint:

- ullet Can you show that $\mathrm{E}[
 ho_i
 ho_j]=0$ when i
 eq j?
- ullet What is the value of $\mathrm{E}[
 ho_i
 ho_i]$?
- What is the value of $v_i \cdot v_i$?
- (b) (5%) Argue that there exists a choice of $\rho_1, \rho_2, \ldots, \rho_n$ such that $||V|| \leq \sqrt{n}$.
- (c) (5%) Your friend, Peter, is more ambitious, and asks if it is possible to to choose $\rho_1, \rho_2, \ldots, \rho_n$ such that

$$||V|| < \sqrt{n}$$

instead of $||V|| \le \sqrt{n}$ we have just shown. Give a counter-example why this may not be possible.

3. (30%) Let F be a family of subsets of $N = \{1, 2, ..., n\}$. F is called an antichain if there are no $A, B \in F$ satisfying $A \subset B$.

Ex:

 $\{\{1,2,6\},\{3,4\},\{5\}\}$ is an antichain. $\{\{1,2,6\},\{3,4\},\{2\}\} \text{ is not an antichain. } (\{2\}\subset\{1,2,6\})$

Let $\sigma \in S_n$ be a random permutation of the elements of N and consider the random variable

$$X = |\{i : \{\sigma(1), \sigma(2), ... \sigma(i)\} \in F\}|$$

By considering the expectation of X prove that $|F| \leq {n \choose \lfloor n/2 \rfloor}$.

Hint:

F can be partitioned into n parts according to the size of subsets, like k_i denotes a size- i set. Therefore, $|F|=k_1+k_2+\ldots+k_n$.

4. (30%) Consider a graph in $G_{n,p}$, with p = 1/n. Let X be the number of triangles in the graph, where a triangle is a clique with three edges. Show that

$$Pr(X \ge 1) \le 1/6$$

and that

$$\lim_{n \to \infty} \Pr(X \ge 1) \ge 1/7$$

 ${\tt Hint:} \quad {\tt Use \ the \ conditional \ expectation \ inequality.}$