CS5314 RANDOMIZED ALGORITHMS

Homework 2
Due: 13:10, Nov 10, 2009 (before class)

1. (10%) A fixed point of a permutation 7 : [1,n] — [1,n] is a value for which 7(x) = z. Find
the variance in the number of fixed points of a permutation chosen uniformly at random
from all permutations.

Hint: Let X; be an indicator such that X; = 1 if (i) = 4. Then, > ;" | X; is the number
of fixed points. You cannot use linearity to find Var[} ! ; X;], but you can calculate it
directly.

2. Recall that the covariance of random variables X and Y is:

Cov[X,Y] = E[(X — E[X])(Y — E[Y])].

We have seen that if X and Y are independent, then the covariance is 0. Interestingly, if
X and Y are not independent, the covariance may still be 0.

(15%) Construct an example where X and Y are not independent, yet Cov[X,Y] = 0.

3. The weak law of large numbers state that, if X, X5, X3, ... are independent and identically
distributed random variables with finite mean g and finite standard deviation o, then for
any constant € > 0 we have
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(15%) Use Chebyshev’s inequality to prove the weak law of large numbers.

4. (20%) Suppose you are given a biased coin that has Pr(head) = p. Also, suppose that we
know p > a, for some fixed a. Now, consider flipping the coin n times and let ngy be the
number of times a head comes up. Naturally, we would estimate p by the value p = ng/n.

(a) Show that for any € € (0, 1),
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(b) Show that for any e € (0, 1), if
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Pr<|p —p| > ep) < 0.

5. (20%) Let Xy, Xs,..., X, be independent Poisson trials such that Pr(X;) = p;. Let X =
Yo, X; and p = E[X]. During the class, we have learnt that for any § > 0,
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In fact, the above inequality holds for the weighted sum of Poisson trials. Precisely, let
ai, ..., an be real numbers in [0,1]. Let W = Y " a;X; and v = E[W]. Then, for any
0 >0,
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(a) Show that the above bound is correct.
(b) Prove a similar bound for the probability Pr(W < (1 — §)v) for any 0 < 6 < 1.

6. (30%) Consider a collection Xy, X, ..., X, of n independent geometric random variables
with parameter 1/2. Let X =" X, and 0 < ¢ < 1.

(a) By applying Chernoff bound to a sequence of (1 + §)(2n) fair coin tosses,” show that

Pr(X > (1+6)(2n)) < exp (2(%55))

(b) Derive a Chernoff bound on Pr(X > (146)(2n)) using the moment generating function
for geometric random variables as follows:

i) Show that for et < 2
(i) :

(ii) Show that for ¢ € (0,1n2),
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(iii) Show that

Pr(X > (1+9)(2n)) < ((1 — %) (1 + 1;;)1“6) ‘”.

(c) It is known that when 0 is small, there exists € > 0 such that
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is minimized when ¢t = In <1 + i+ 5)> .

Show that in this case, the bound in 5(b)-(iii) becomes
Pr(X > (1+6)(2n)) < exp (—n(l —¢)é* —¢).

Conclude that when ¢ is small enough such that ¢ is arbitrarily close to 0, the above
bound is tighter than the bound obtained in 5(a).

7. (Bonus: 10%) Let S be a set of n numbers. The median-finding algorithm discussed in
class finds the median of S with high probability, and its running time is 2n + o(n). Can
you generalize this algorithm so that it can find the kth smallest item of S for any given
value of k7

Prove that your resulting algorithm is correct, and bound its running time. (Better bounds
may get better grades.)

THere, we just assume (1 + §)(2n) is an integer.



