
Randomized algorithm

Tutorial 6
Solution for Assignment 3
Hint for Assignment 4



Solution for assignment 3



Exercise 1

 Let X be a Poisson random variable
with mean μ.

a) What is the most likely value of X when
λ is an integer?
λ is not an integer?
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Exercise 1
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Exercise 1

b) We define the median of X to be the
least number m such that
Pr(X≦m)≧1/2. What is the median of X
when λ = 3.9?
[Sol]
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Exercise 2

 X: Poisson random variable(μ)

p

1-p

X: # of criminals

Y: # of reformable
criminals

Z: # of flagrant
criminals



Exercise 2

 Are Y and Z independent?
 [Sol]
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Exercise 2
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Exercise 3
a) Now, b balls are in play.

f(b): the expected number of balls that
survive to the subsequent round.

Given an explicit formula for f(b).

))
1

1(1(]ball1withbinsofnumber[E)(

)
1

1()th...Pr(]ball1withbinsofnumber[E

)
1

1(
1

)ball1exactlyhasbinthPr(

1

1

1













b

b

b

n
bbbf

n
bin

nn
bi



Exercise 3

b) Show that f(b) ≦b2/n.
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Exercise 3

c) Suppose that every round the number of balls
served was exactly the expected value.
Show that all the balls would be served in
O(log log n) rounds.



Exercise 3 : Solution

 Suppose we have n / k balls initially,
for some fixed constant k > 1.

From part (b),
f(n/k) n / k2.

After r rounds,
f(r)(n/k) n / ks where s = 2r

When r = logklog2n = O(log log n),
f(r)(n/k) 1



Exercise 3

Now, consider about the case that we have
n balls initially.
If n is large, #balls after 1st round is :
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Exercise 4

a) Argue that the maximum load in this
case is only O(log log n / log log log n)
with probability that approaches 1 as
n→∞.



Exercise 4

 Among all n bins, we choose log n bins
(evenly) as representatives.



Exercise 4 : Solution
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Exercise 5

Consider n balls thrown randomly into n bins
 Let X=X1+X2+…+Xn , where

Xi = 1 if i-th bin is empty ; 0 otherwise.
 Let Y=Y1+Y2+…+Yn , where

each Yi is an independent Bernoulli
random variables with

Pr(Yi = 1) = (1-1/n)n.



Exercise 5

a) Show that E[X1X2…Xk] ≦ E[Y1Y2…Yk].
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Exercise 5(a) : Alternative solution

 By induction
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Exercise 5

b) Show that Xi1
k1 Xi2

k2 …Xij
kj = Xi1 Xi2
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Exercise 5

c) Show that E[etX] ≦ E[etY]
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Exercise 5

d) Derive a Chernoff bound for
Pr(X≧ (1+δ)E[X])
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Exercise 5
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Hint for assignment 4



Exercise 1

 k-uniform hypergraph
V = {A,B,C,D,E,F,G}
E = { {ABC}, {CDE}, {EFG} }

A

B C

D
E

F

G



Exercise 1

 Given a k-uniform hypergraph with
E = {S1, S2, S3, …, S|C|} ,
|C| ≦ 4k-1-1, and k≧2.

Show that there exists a 4-coloring
such that no k-set is monochromatic.

[Hint] You can do it without any hint.



Exercise 2

 Anti-chain
F, a family of subsets of N={1,2,…,n} is
called anti-chain if there are no A, B in
F satisfying A in B.

Ex: F={ {1,3,4} , {2,4} , {1,5} , {6} }

What if F={ {1,3,4}, {2,4} , {1,4} , {6} }?



Exercise 2

 Let σ be a random permutation of the
elements of N and consider the
random variable
X = |{i:{σ(1), σ(2),…, σ(i)}∈F } |

F={ {1,3}, {2}} σ= (2,3,1)
X= 1 (why?)

F={ {1,3}, {2}} σ= (3,2,1)
X= 0 (why?)



Exercise 2

 Considering the expectation of X,
prove that

 










2/
||

n
n

F



Exercise 2

 [Hint]
Separate F by the size of elements.
Number of size-1 set: K1
Number of size-2 set K2, …,
Number of size-n set Kn.

|F| = K1+K2+…+Kn.
E[X] = ?



Exercise 3

 Tournament
A complete oriented graph i.e., a graph in
which every pair of nodes is connected
by a single uniquely directed edge.



Exercise 3

 Show that there is a tournament T with
n vertices which contains at least
n! 2-(n-1) Hamiltonian paths.

[Hint] You can do it without any hint.



Exercise 4

 Consider a graph in Gn,p, with p = 1/n.
Let X be the # of triangles in the graph.
Show that

(a) Pr(X≧1)≦1/6
(b)

[Hint] For (b), use conditional
expectation inequality.
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Exercise 5

 Use the general form of the Lovasz
local lemma to prove that the
symmetric version can be improved
where we can replace the condition
4dp≦1 by the weaker condition
ep(d+1)≦1.



Exercise 5

 [Hint]
1. Set xi =1/(d+1) to the general case

Lovasz local lemma.
2. Pr(Ei) ≦ p (symmetric version)

Try to prove
Pr(Ei)≦ xiΠ(i,j)∈E (1=xj).


