|

Randomized Algorithms

Tutorial 3
Hints for Homework 2

[ouine |

= Hints for Homework 2

= Randomized Quicksort (Exercise 4.20)
= Michael's Algorithm (optional);

= One of Three (optional)

[1]Probability and Computing, CMU 15-359, Fall 2007.

|

Hints for Homework 2

[Exercise 1]

= Find variance in number of fixed points
assuming permutation Is chosen
uniformly at random

= Hint
o Cannot use linearity to find the variance.
o Just calculate it directly

[Exercise 2

Weak Law of Large Numbers
o Iindependent RV X,, X, ..., X_
o Same finite mean , finite std-dev ¢

Show
IimPr(X+ X, +..+ X, u >8]20
Nn—oo n

Hint

o Chebyshev’'s inequality

[Exercise 3 (Parameter Estimation)

Show that

_ —nag? —nag?
Pr(| p— p > ep) < exp > +exp 2

Show for any ¢ belongs to (0,1)
2In(2/9)

ac?

if n> thenPr(|p—p>&p) <o

[Exercise 4

et X4, X,, ..., X, be n Poisson trials
_eta,, a,, ..., a, berealin [0,1]

et W =2 aX and y=E[W].

Show that

e’ '
Pri(W > (1+0)v) < [(1+ 5)5)]

Hint
o MGF & Markov inequality

[Exercise 4]

= Somehow, you may need to show this
iInequality to simplify terms:
= Foranyx € [0,1],
e*—1 < x(et-1)

= Hint: can be proven by calculus

[Exercise 5

Let X=X, + X, + ... + X,
each X, = Geo(0.5)

Compare X with a sequence of fair
coin tosses = Show that

Pr(X > (1+6)2n) < exp[2_(1n+552)j

|

Randomized Quicksort

Quicksort(S) {
1. If|S|=1, return S
2. Else, pick an item x from S
3. Divide Sinto S; and S, with
S, = list of all items smaller than x
S, = list of all tems greater than x
4. List, = Quicksort(S,)
List, = Quicksort(S,)
6. return List,, X, List,

Ol

[Randomized Quicksort

In step 2, we choose x by picking an
item uniformly at random from S.

Runtime = expected O(n log n)

Can we show it runs in O(n log n) time
with high probability ?

[Randomized Quicksort

Let s = size of the set to be sorted
at a particular node

Node:= point which decides on a pivot

Randomized Quicksort

good node «— bad node

3s/4

s/

A good node is one whose pivot divides the set into two parts
with size of each part not exceeding 2s/3

[Randomized Quicksort

Fact 1. # good nodes in any path Is at
most c log, n, for some ¢

Proof:
good nodes Is at most

log n /log(3/2) =clogn

[Randomized Quicksort

Fact 2: With probability = 1 - 1/n?,
nodes In a root-to-leaf path Is
at most ¢’ log,n, for some ¢’

Proof:
P := aroot-to-leaf path,
| length of P
B:= #badnodesinP

[Randomized Quicksort

Proof (cont.): Now, we know that
B=1l-clogn (wWhy?)
and Pr(bad node) = 2/3

Pr(l > c’log n)
< Pr(B>c'logn-clog n)
< (2/3)¢legn—-clogn < n-2 (forlarge c’)

[Randomized Quicksort

Fact 3. With probability = 1-1/n,

nodes Iin the longest root-to-leaf
path is at most ¢’ log, n

Proof: Union Bound

[Randomized Quicksort

Conclusion:

Runtime of Randomized Quicksort Is
O(n log n) with prob at least 1-1/n

Proof:

Height of the tree i1s O(log n) with
orobabillity at least 1-1/n

Runtime In this case: O(n log n)

|

Michael’'s Algorithm

[I\/Iichael’s Algorithm]

= Input: a set of 2D points
= Determine the closest pair (and its dist)
= Input points are stored in an array

O

[I\/Iichael’s Algorithm

= Suppose we have a strange storage
data structure D :

= When we give a point to D, It stores
the point and outputs the closest pair
of points stored in D

D @080 _ nsert® —» D @0980O
OutputO@ OutputO@®

[I\/Iichael’s Algorithm]

= Our knowledge: Insertion time
depends on whether the closest pair Is
changed or not.

= If output Is the same: 1 clock tick
D @000 _ nsert@® —» P o O
OutputO@® OutputO@®

[I\/Iichael’s Algorithm]

= If output is not the same: |D| clock ticks

D @0080 _ | nsert® —» D OO O
OutputO@ Output@O

[I\/Iichael’s Algorithm

With random insertion order,

show that the expected total number of
clock ticks used by D is O(n)

Proof:
X.: # clock ticks to insert i t" point

X: the total clock ticks

[I\/Iichael’s Algorithm

Proof (cont.):
p = Pr(i™ point causes answer change)
= Pr(i™ point causes answer change)
= 2/

E
E

X]= i*p + 1*(1-p) = i* 2/i +1- 2/i <3

X] =0(n) Dby linearity of expectation

|

One of Three

[One of Three

= A company Is developing a prediction
system by machine learning

= For a given item, the prediction has
o Pr(success) = p;
o Pr(failure) =p,
o Pr(not sure) = p,

[One of Three

= The algorithm is run for n items
= Let

X,: total # with correct prediction
X,: total # with failure prediction

X,: total # with not-sure prediction

= Can we compute E[X,|X;=m] ?

[One of Three

Answer:
(1) X;=m =2> X, +X,=n =n-m
(2) Let p’denote:

Pr(i t prediction correct | not not-sure)
= py/ (P1+P2)

[One of Three

The value of X, given X;=m is Bin(n’,p’)

E[X,[X53=m]
- n’p’
= (n-m)p,/(p,+P,)

