
Randomized Algorithms

Tutorial 3
Hints for Homework 2

Outline

 Hints for Homework 2
 Randomized Quicksort (Exercise 4.20)
 Michael’s Algorithm (optional)[1]

 One of Three (optional) [1]

[1]Probability and Computing, CMU 15-359, Fall 2007.

Hints for Homework 2

Exercise 1

 Find variance in number of fixed points
assuming permutation is chosen
uniformly at random

 Hint
 Cannot use linearity to find the variance.
 Just calculate it directly

Exercise 2
 Weak Law of Large Numbers

 independent RV X1, X2, …, Xn

 Same finite mean μ, finite std-dev σ

 Show

 Hint
 Chebyshev’s inequality

0
...

Prlim 21

n

XXX n

n

Exercise 3 (Parameter Estimation)

 Show that

 Show for any δ belongs to (0,1)

3
exp

2
exp)|~Pr(|

22 nana
ppp

)|~Pr(|then,

)/2ln(2
if 2 ppp

a
n

Exercise 4
 Let X1, X2, …, Xn be n Poisson trials
 Let a1, a2, …, an be real in [0,1]

 Let W =ΣaiXi and ν=E[W].
 Show that

 Hint
 MGF & Markov inequality

)1()1(
))1(Pr(

e
W

Exercise 4

 Somehow, you may need to show this
inequality to simplify terms:

 For any x 2 [0,1],

etx –1 · x(et –1)

 Hint: can be proven by calculus

Exercise 5

 Let X = X1 + X2 + … + Xn ,
each Xi = Geo(0.5)

 Compare X with a sequence of fair
coin tosses Show that

)1(2
exp)2)1(Pr(

2

n

nX

Randomized Quicksort

Quicksort(S) {
1. If |S|≦1, return S
2. Else, pick an item x from S
3. Divide S into S1 and S2 with

S1 = list of all items smaller than x
S2 = list of all items greater than x

4. List1 = Quicksort(S1)
5. List2 = Quicksort(S2)
6. return List1, x, List2

}

Randomized Quicksort

 In step 2, we choose x by picking an
item uniformly at random from S.

 Runtime = expected O(n log n)

 Can we show it runs in O(n log n) time
with high probability ?

Randomized Quicksort

 Let s = size of the set to be sorted
at a particular node

Node:= point which decides on a pivot

Randomized Quicksort

… … … … … … … …

s/2 3s/4

good node bad node

A good node is one whose pivot divides the set into two parts
with size of each part not exceeding 2s/3

Randomized Quicksort

Fact 1: # good nodes in any path is at
most c log2 n, for some c

Proof:
good nodes is at most
log n / log(3/2) = c log n

Randomized Quicksort

Fact 2: With probability ≧ 1 - 1/n2,
nodes in a root-to-leaf path is
at most c’log2n, for some c’

Proof:
P := a root-to-leaf path,
l := length of P
B := # bad nodes in P

Randomized Quicksort

Proof (cont.): Now, we know that
B≧ l –c log n (why?)

and Pr(bad node) = 2/3

 Pr(l > c’log n)
≦ Pr(B > c’log n –c log n)
≦(2/3)c’log n –c log n ＜n-2 (for large c’)

Randomized Quicksort

Fact 3: With probability ≧ 1-1/n,
nodes in the longest root-to-leaf
path is at most c’log2 n

Proof: Union Bound

Randomized Quicksort

Conclusion:
Runtime of Randomized Quicksort is
O(n log n) with prob at least 1-1/n

Proof:
Height of the tree is O(log n) with
probability at least 1-1/n
Runtime in this case: O(n log n)

Michael’s Algorithm

Michael’s Algorithm

 Input: a set of 2D points
 Determine the closest pair (and its dist)
 Input points are stored in an array

…

Michael’s Algorithm

 Suppose we have a strange storage
data structure D :

 When we give a point to D, it stores
the point and outputs the closest pair
of points stored in D

D

Output

Insert
D

Output

Michael’s Algorithm

 Our knowledge: Insertion time
depends on whether the closest pair is
changed or not.

 If output is the same: 1 clock tick

D

Output

Insert
D

Output

Michael’s Algorithm

 If output is not the same: |D| clock ticks

Insert
D

Output

D

Output

Michael’s Algorithm

 With random insertion order,
show that the expected total number of
clock ticks used by D is O(n)

Proof:
Xi: # clock ticks to insert i th point
X: the total clock ticks

Michael’s Algorithm

Proof (cont.):
p = Pr(i th point causes answer change)

= Pr(i th point causes answer change)
= 2/i

 E[Xi] = i*p + 1*(1-p) = i* 2/i +1- 2/i ＜3
 E[X] = O(n) by linearity of expectation

One of Three

One of Three

 A company is developing a prediction
system by machine learning

 For a given item, the prediction has
 Pr(success) = p1

 Pr(failure) = p2

 Pr(not sure) = p3

One of Three

 The algorithm is run for n items
 Let

X1: total # with correct prediction
X2: total # with failure prediction
X3: total # with not-sure prediction

 Can we compute E[X1|X3=m] ?

One of Three

Answer:
(1) X3=m X1+X2 = n’= n-m
(2) Let p’denote:

Pr(i th prediction correct | not not-sure)
= p1 / (p1+p2)

One of Three

The value of X1 given X3=m is Bin(n’,p’)

E[X1|X3=m]
＝n’p’
＝(n-m)p1/(p1+p2)

