Randomized Algorithms

Tutorial 3 Hints for Homework 2

Outline

- Hints for Homework 2
- Randomized Quicksort (Exercise 4.20)
- Michael's Algorithm (optional)_[1]
- One of Three (optional) [1]

[1] Probability and Computing, CMU 15-359, Fall 2007.

Hints for Homework 2

 Find variance in number of fixed points assuming permutation is chosen uniformly at random

Hint

- Cannot use linearity to find the variance.
- Just calculate it directly

Weak Law of Large Numbers

- o independent RV $X_1, X_2, ..., X_n$
- o Same finite mean μ , finite std-dev σ

Show

$$\lim_{n \to \infty} \Pr\left(\left| \frac{X_1 + X_2 + \ldots + X_n}{n} - \mu \right| > \varepsilon \right) = 0$$

Hint

• Chebyshev's inequality

Exercise 3 (Parameter Estimation)

Show that $\Pr(|p - \tilde{p}| > \varepsilon p) < \exp\left(\frac{-na\varepsilon^2}{2}\right) + \exp\left(\frac{-na\varepsilon^2}{3}\right)$

Show for any δ belongs to (0,1)

if
$$n > \frac{2\ln(2/\delta)}{a\varepsilon^2}$$
, then $\Pr(|p - \tilde{p}| > \varepsilon p) < \delta$

- Let X_1, X_2, \dots, X_n be *n* Poisson trials
- Let *a*₁, *a*₂, ..., *a_n* be real in [0,1]
- Let $W = \sum a_i X_i$ and $\nu = E[W]$.
- Show that

$$\Pr(W > (1+\delta)\nu) < \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\nu}$$

Hint

• MGF & Markov inequality

Somehow, you may need to show this inequality to simplify terms:

• For any
$$x \in [0,1]$$
,

$$e^{tx}-1 \leq x(e^t-1)$$

Hint: can be proven by calculus

• Let
$$X = X_1 + X_2 + ... + X_n$$
,
each $X_i = \text{Geo}(0.5)$

■ Compare X with a sequence of fair coin tosses → Show that

$$\Pr(X > (1+\delta)2n) < \exp\left(\frac{-n\delta^2}{2(1+\delta)}\right)$$

Quicksort(S) {

- 1. If $|S| \leq 1$, return S
- 2. Else, pick an item *x* from *S*
- 3. Divide S into S_1 and S_2 with S_1 = list of all items smaller than x
 - S_2 = list of all items greater than x
- 4. $List_1 = Quicksort(S_1)$
- 5. $List_2 = Quicksort(S_2)$
- 6. return $List_1$, x, $List_2$

- In step 2, we choose x by picking an item uniformly at random from S.
- Runtime = expected $O(n \log n)$
- Can we show it runs in O(n log n) time with high probability ?

Let s = size of the set to be sorted at a particular node

Node:= point which decides on a pivot

A good node is one whose pivot divides the set into two parts with size of each part not exceeding 2s/3

Fact 1: # good nodes in any path is at most $c \log_2 n$, for some c

Proof:

good nodes is at most $\log n / \log(3/2) = c \log n$

Fact 2: With probability $\geq 1 - 1/n^2$, # nodes in a root-to-leaf path is at most c' log₂n, for some c'

Proof:

- *P* := a root-to-leaf path,
- I := length of P
- B := # bad nodes in P

Proof (cont.): Now, we know that $B \ge 1 - c \log n$ (why?) and Pr(bad node) = 2/3

Pr(*I* > *c*' log *n*)
$$\leq \Pr(B > c' \log n - c \log n)$$

$$\leq (2/3)^{c' \log n - c \log n} < n^{-2} \quad (\text{ for large } c')$$

Fact 3: With probability $\geq 1-1/n$, # nodes in the longest root-to-leaf path is at most *c*' $\log_2 n$

Proof: Union Bound

Conclusion:

Runtime of Randomized Quicksort is $O(n \log n)$ with prob at least 1-1/n

Proof:

Height of the tree is $O(\log n)$ with probability at least 1-1/nRuntime in this case: $O(n \log n)$

- Input: a set of 2D points
- Determine the closest pair (and its dist)
- Input points are stored in an array

- Suppose we have a strange storage data structure D:
- When we give a point to D, it stores the point and outputs the closest pair of points stored in D

- Our knowledge: Insertion time depends on whether the closest pair is changed or not.
- If output is the same: 1 clock tick

If output is not the same: |D| clock ticks

With random insertion order,
 show that the expected total number of clock ticks used by *D* is *O*(*n*)

Proof:

 X_i : # clock ticks to insert *i*th point

X: the total clock ticks

Proof (cont.):

- $p = \Pr(i^{\text{th}} \text{ point causes answer change})$ = $\Pr(i^{\text{th}} \text{ point causes answer change})$ = 2/i
- → E[X_i] = i*p + 1*(1-p) = i*2/i +1-2/i <3
 → E[X] = O(n) by linearity of expectation

- A company is developing a prediction system by machine learning
- For a given item, the prediction has
 - $Pr(success) = p_1$
 - Pr(failure) = p_2
 - Pr(not sure) = p_3

- The algorithm is run for n items
- Let
 - X_1 : total # with correct prediction X_2 : total # with failure prediction X_3 : total # with not-sure prediction
- Can we compute $E[X_1|X_3=m]$?

Answer:

(1)
$$X_3 = m \rightarrow X_1 + X_2 = n' = n - m$$

(2) Let p' denote:

 $Pr(i^{th} prediction correct | not not-sure) = p_1 / (p_1+p_2)$

The value of X_1 given $X_3 = m$ is Bin(n', p')

$$E[X_1 | X_3 = m] = n'p' = (n-m)p_1/(p_1+p_2)$$