Randomized algorithm

Tutorial 2
Solution for homework 1

Outline

- Solutions for homework 1
- Negative binomial random variable
- Paintball game
- Rope puzzle

Solutions for homework 1

$$Pr(W) = \frac{a}{a+b}$$

$$Pr(B) = \frac{b}{a+b}$$

- Draw a white ball from Box 2 : event A
 - Pr(A)= $Pr(A \cap (W \cup B))$ = $Pr((A \cap W) \cup (A \cap B))$ = $Pr(A \cap W) + Pr(B \cap W)$ = Pr(A|W)Pr(W) + Pr(A|B)Pr(B)

It is easy to see that

$$Pr(A \mid W) = \frac{c+1}{c+d+1}$$

$$Pr(A \mid B) = \frac{c}{c+d+1}$$

$$Pr(A)$$

$$= Pr(A \mid W)Pr(W) + Pr(A \mid B)Pr(B)$$

$$= \frac{ac+bc+a}{(c+1)(c+1)}$$

• W_i = pick a white ball at the *i*-th time

$$\Pr(W_1 \cap W_2)$$

$$= \Pr(W_2/W_1)\Pr(W_1)$$

$$= \frac{a-1}{a+b-1} \times \frac{a}{a+b}$$

$$= \frac{1}{3}$$

$$\frac{a-1}{a+b-1} < \frac{a}{a+b}$$

$$\Rightarrow \left(\frac{a-1}{a+b-1}\right)^2 < \frac{a-1}{a+b-1} \times \frac{a}{a+b} < \left(\frac{a}{a+b}\right)^2$$

$$\Rightarrow \left(\frac{a-1}{a+b-1}\right)^2 < \frac{1}{3} < \left(\frac{a}{a+b}\right)^2$$

$$3(a-1)^{2} < (a+b-1)^{2}$$

$$\Rightarrow \sqrt{3}(a-1) < a+b-1$$

$$\Rightarrow (\sqrt{3}-1)a < b-1+\sqrt{3}$$

$$\Rightarrow a < \frac{b+\sqrt{3}-1}{\sqrt{3}-1}$$

$$\Rightarrow a < 1 + \frac{(\sqrt{3}+1)b}{2}$$

$$(a+b)^{2} < 3a^{2}$$

$$\Rightarrow a+b < \sqrt{3}a$$

$$\Rightarrow b < (\sqrt{3}-1)a$$

$$\Rightarrow \frac{b}{\sqrt{3}-1} < a$$

$$\Rightarrow \frac{(\sqrt{3}+1)b}{2} < a$$

$$\frac{(\sqrt{3}+1)b}{2} < a < 1 + \frac{(\sqrt{3}+1)b}{2}$$

- 1 b maps 1 a only
- For *b*=1, 1.36<*a*<2.36 means *a*=2
 - \circ Pr(W₁ \cap W₂) = 2/3 * 1/2= 1/3
- Then we may try
 - o $b=2 \rightarrow a=3 \rightarrow odd$
 - o b=4 →a=6 →even

- By the hint
 - \circ X = sum is even.
 - \circ Y = the number of first die is even
 - \circ Z = the number of second die is odd
 - o $Pr(X \cap Y) = \frac{1}{4} = \frac{1}{2} * \frac{1}{2}$
 - \circ Pr($X \cap Z$) = $\frac{1}{4}$ = $\frac{1}{2}$ * $\frac{1}{2}$
 - \circ Pr(Y\cap Z) = \frac{1}{4} = \frac{1}{2} * \frac{1}{2}
 - \circ Pr($X \cap Y \cap Z$) =0

Let C_1 , C_2 , ..., C_k be all possible mincut sets.

Pr(algorithm returns
$$C_i$$
) = $\frac{2}{n(n-1)}$

$$\Rightarrow \sum_{i=1}^{k} \Pr(\text{algorithm returns } C_i) \leq 1$$

$$\Rightarrow \frac{2k}{n(n-1)} \le 1$$

$$\Rightarrow k \leq \frac{n(n-1)}{2}$$

- Indicator variable
 - \circ Pr(X_i) = 1 if the *i*-th pair are couple.
 - \circ Pr(X_i) = 0 Otherwise
- Linearity of expectation
 - $\circ X = \sum_{i=1 \text{ to } 20} X_i$

o
$$E[X] = \sum_{i=1 \text{ to } 20} E[X_i]$$

= $\sum_{i=1 \text{ to } 20} 1/20$
= 1

$$Pr(X = Y)$$
= $\sum_{k} Pr(X = k | Y = k) Pr(Y = k)$
= $\sum_{k} (1-p)^{1-k} p(1-q)^{1-k} q$
= $pq \sum_{k} (1-p-q+pq)^{1-k}$
= $\frac{pq}{p+q-pq}$

$$E[X] = \frac{1}{p}$$

$$E[Y] = \frac{1}{q}$$

$$E[\min(X,Y)] = \frac{1}{1 - (1-p)(1-q)}$$

$$E[\max(X,Y)] = E[X] + E[Y] - E[\min(X,Y)]$$

$$= \frac{1}{p} + \frac{1}{q} - \frac{1}{1 - (1-p)(1-q)}$$

- To choose the *i*-th candidate, we need
 - \circ i>m
 - i-th candidate is the best [Event B]
 - The best of the first i-1 candidates should be in 1 to m. [Event Y]

Therefore, the probability that i is the best candidate is

$$Pr(E_i) = Pr(B_i) Pr(Y_i \mid B_i) = \frac{1}{n} \times \frac{m}{i-1}$$

 The probability of selecting the best one is

$$Pr(E) = \sum_{i=m+1}^{n} Pr(E_i) = \frac{m}{n} \sum_{i=m+1}^{n} \frac{1}{i-1}$$

Consider the curve f(x)=1/x. The area under the curve from x = j-1 to x = j is less than 1/(j-1), but the area from x = j-2 to x = j-1 is larger than 1/(j-1).

$$\sum_{j=m+1}^{n} \frac{1}{j-1} \ge \int_{m}^{n} f(x) dx = \log_{e} n - \log_{e} m$$

$$\sum_{j=m+1}^{n} \frac{1}{j-1} \le \int_{m-1}^{n-1} f(x) dx = \log_{e} (n-1) - \log_{e} (m-1)$$

$$g(m) = \frac{m}{n} (\log_e n - \log_e m)$$

$$g'(m) = \frac{\log_e n - \log_e m}{n} - \frac{1}{n} \rightarrow g'(m) = 0 \text{ when } m = n/e$$

$$g''(m) = \frac{-1}{mn} \qquad \qquad \rightarrow g''(m) < 0 , g(m) \text{ is } max \text{ when } m = n/e$$

$$\Pr(E)$$

$$\geq \frac{m(\log_{e} n - \log_{e} m)}{n}$$

$$= \frac{n(\log_{e} n - \log_{e} (n/e))}{ne}$$

$$= \frac{n(\log_{e} e)}{ne}$$

$$= \frac{1}{e}$$

Homework 1-8 (bonus)

$$S=\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6\}$$

$$Y=\{-1,2,-3,4,-5,6\}$$

$$E[X]=-0.5$$

$$E[Z] = -3.5$$

Definition

 y is said to be negative binomial random variable with parameter r and p if

$$\Pr(y = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

 For example, we want r heads when flipping a coin.

Let z=y-r Pr(z = k) = Pr(y = k + r) $= {r+k-1 \choose r-1} p^{r} (1-p)^{k}$ $= {r+k-1 \choose k} p^{r} (1-p)^{k}$

Let *r*=1

$$Pr(z = k)$$

$$= {r+k-1 \choose k} p^{r} (1-p)^{k}$$

$$= p(1-p)^{k}$$

Isn't it familiar?

Suppose the rule of meichu game has been changed. The one who win three games first would be the champion. Let p be the probability for NTHU to win each game, 0<p<1.</p>

Let the event

$$A_k = \{ \text{NTHU wins on the } k - \text{th game} \}$$
 $k = 3,4,5$

We know

Pr(NTHU wins) = Pr(
$$\bigcup_{k=3}^{5} A_k$$
) = $\sum_{k=3}^{5} P(A_k)$

where

$$Pr(A_k) = P(3\text{rd success on } k\text{th game}) = {\binom{k-1}{2}} p^3 (1-p)^{k-3}$$

Hence

Pr(NTHU wins) =
$$\sum_{k=3}^{5} {k-1 \choose 2} p^3 (1-p)^{k-3}$$

Given that NTHU has already won the first game. What is the probability of NTHU being the champion?

$$\sum_{k=2}^{4} {k-1 \choose 1} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^{k-2} = \left(\frac{1}{4} + \frac{2}{8} + \frac{3}{16}\right) = \frac{11}{16}$$

Paintball game

- You James Bond, and Robin Hood decide to play a paintball game. The rules are as follows
 - Everyone attack another in an order.
 - Anyone who get "hit" should quit.
 - The survival is the winner.
 - You can choose shoot into air.

Paintball game

- James Bond is good at using gun, he can hit with probability 100%.
- Robin Hood is a bowman, he can hit with probability 60%.
- You are an ordinary person, can only hit with probability 30%.
- The order of shot is you, Robin Hood then James Bonds.

Paintball game

- What is your best strategy of first shoot?
- Please calculate each player's probability of winning.

Rope puzzle

- We have three ropes with equal length (Obviously, there are 6 endpoint).
- Now we randomly choose 2 endpoints and tied them together. Repeat it until every endpoint are tied.

Rope puzzle

There can be three cases

Which case has higher probability?