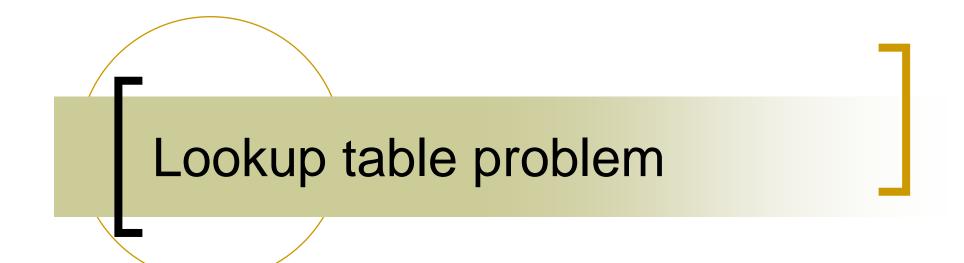
Randomized algorithm

Tutorial 1 Hint for homework 1

Outline

- Lookup table problem (Exercise 1.18)
- Convex function (Exercise 2.10)
- Hint for homework 1



- $F:\{0,...,n-1\} \rightarrow \{0,...,m-1\}.$
- For any *x* and *y* with $0 \le x$, $y \le n-1$:
- $F((x + y) \mod n) = (F(x) + F(y)) \mod m$.

X	0	1	2	3	4	5	6	7	8	9
f(x)	0	2	4	6	1	3	5	0	2	4

n=10. *m*=7

 Now, someone has changed exactly 1/5 of the lookup table entries

X	0	1	2	3	4	5	6	7	8	9
f(x)	0	2	4	2	1	3	2	0	2	4

- (a) Given any input z, outputs the correct value F(z) with probability at least 1/2. (it needs to work for every value)
 - 1. Pick a x, uniformly at random from [0, ..., n-1].
 - 2. Compute $y = z x \mod n$.
 - 3. output $(F(x)+F(y)) \mod m$ as our computed value for F(z).

Pr (the output F(z) is correct) $\geq \Pr(F(x) \text{ and } F(y) \text{ are not modified})$ $= 1 \operatorname{-Pr}(F(x) \text{ or } F(y) \text{ are modified})$ $\geq 1 \operatorname{-}(\Pr(F(x) \text{ is modified}) + \Pr(F(y) \text{ is modified}))$ $\geq 1 \operatorname{-}(1/5 + 1/5) = 3/5$

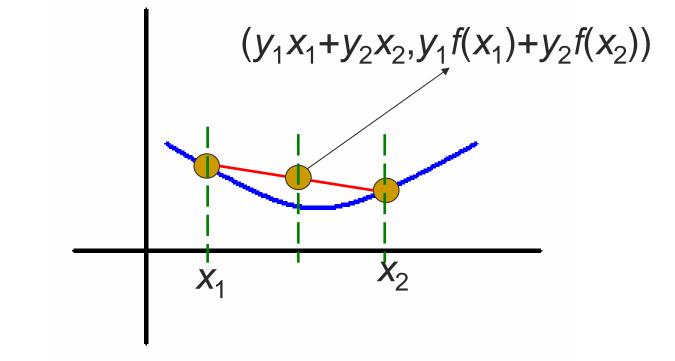
- (b) Can you improve the probability of returning the correct value with repeating your algorithm three times?
 - 1. Pick three values (with replacement) of y_1 , y_2 , y_3 as y values.
 - 2. compute the corresponding values of $F(z_1), F(z_2), F(z_3)$.
 - 3. If two or more of the F(z) values are equal, we output such value. Otherwise, we output any one of these values.

- Pr (the output F(z) is correct)
 - \geq Pr (at least two of the $F(z_i), F(z_2), F(z_3)$ are correct)
 - = Pr (exactly two of the $F(z_1), F(z_2), F(z_3)$ are correct)+Pr (all $F(z_1), F(z_2), F(z_3)$ are correct)
 - \geq 3*3/5*3/5*2/5+3/5*3/5*3/5
 - =54/125+27/125=81/125

Convex function

Show by induction that if f:R \rightarrow R is convex then, for any $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$ with $\sum_{i=1}^n y_i = 1$

$$f(\sum_{i=1}^{n} y_i x_i) \le \sum_{i=1}^{n} y_i f(x_i)$$



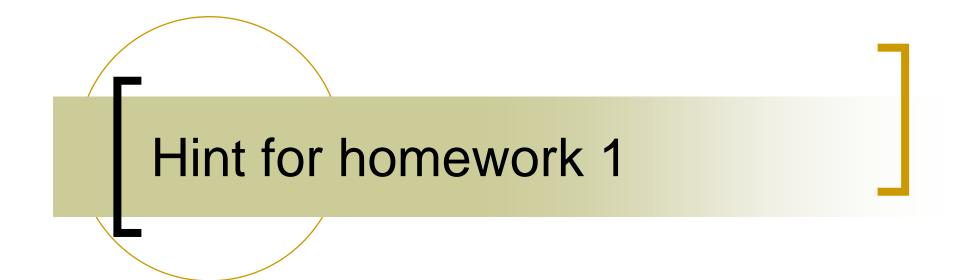
 $f(y_1x_1 + y_2x_2) \le y_1f(x_1) + y_2f(x_2)$

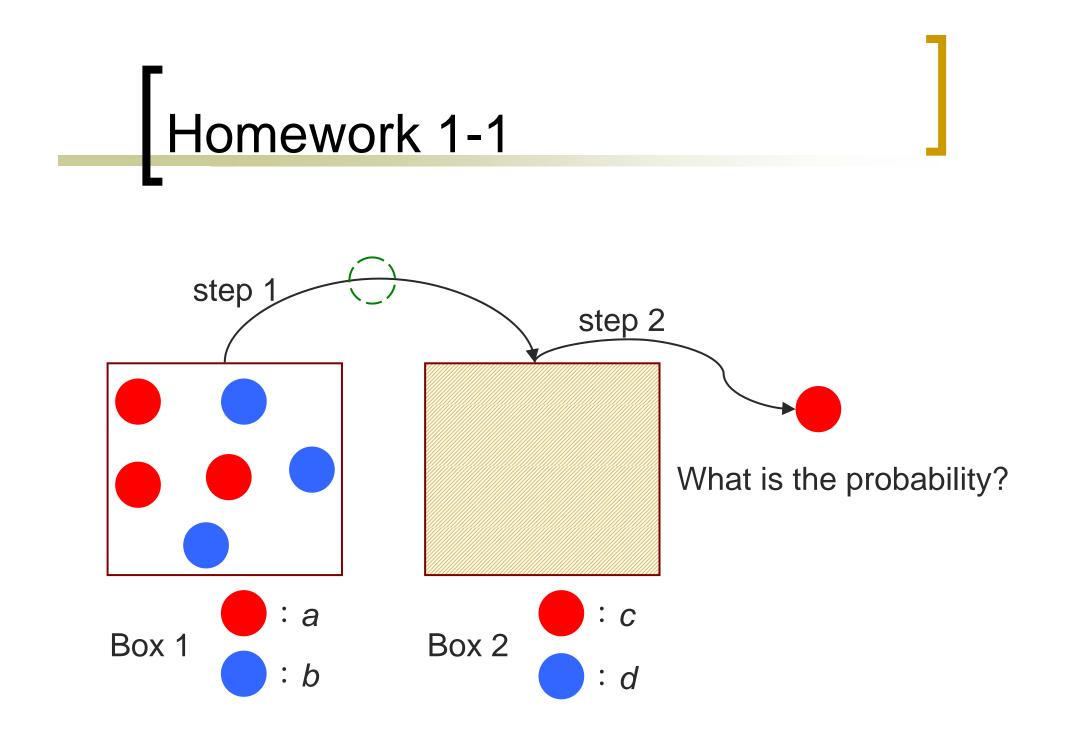
Convex function

 $f(y_1x_1 + y_3x_3 + y_4x_4)$ $= f(y_1x_1 + (y_3 + y_4)(\frac{y_3x_3}{y_3 + y_4} + \frac{y_4x_4}{y_3 + y_4}))$ $\leq y_1f(x_1) + (y_3 + y_4)(\frac{y_3f(x_3)}{y_3 + y_4} + \frac{y_4f(x_4)}{y_3 + y_4})$ $= y_1f(x_1) + y_3f(x_3) + y_4f(x_4)$

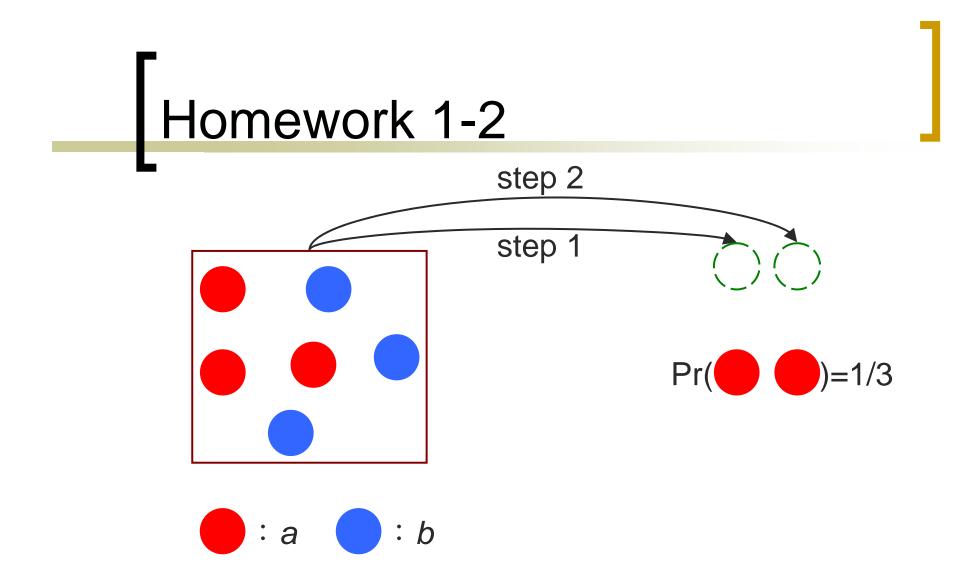
Convex function

Use former inequality to prove that if f:R \rightarrow R is convex then E[f(X)] \geq f(E[X]) $X = x_1, x_2, ..., x_k$ $y_i = \Pr(X = x_i)$ 1. E[X] = $\sum_{i=1}^{k} \Pr(X = x_i) x_i = \sum_{i=1}^{k} y_i x_i$ 2. E[f(X)] = $\sum_{i=1}^{k} \Pr(X = x_i) f(x_i) = \sum_{i=1}^{k} y_i f(x_i)$ $f(E[X]) \leq E[f(X)]$





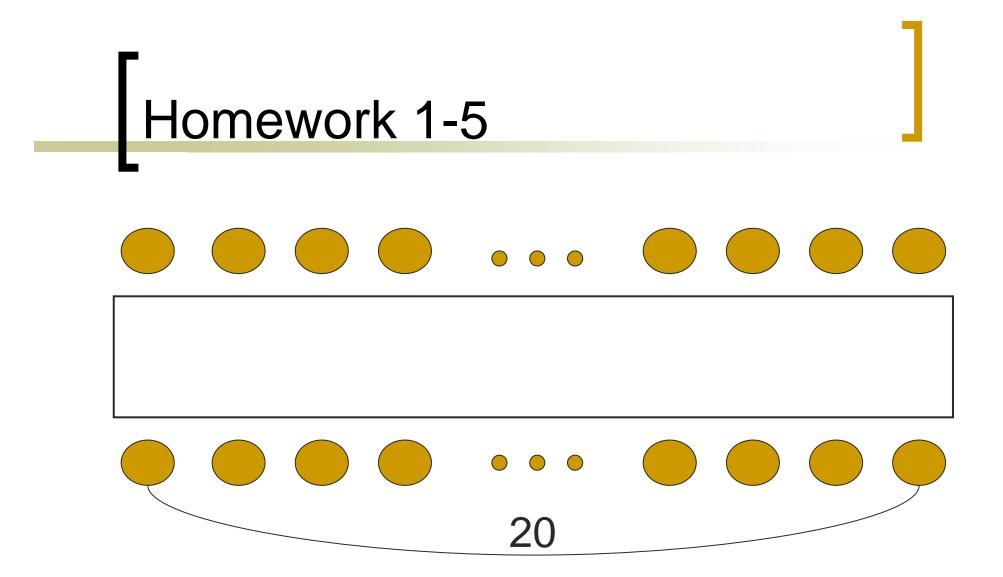
- Hint: There are two cases
 - The ball from one to the other is black.
 - The ball from one to the other is white.



The probability we get a white ball at the first time is a/a+b.

- Give an example of three random events X, Y, Z for which any pair are independent but all three are not mutually independent.
- Hint: Two dices with X=sum is even. You may use $Pr(\bigcap_{i \in I} E_i) = \prod_{i \in I} Pr(E_i)$ to check your answer.

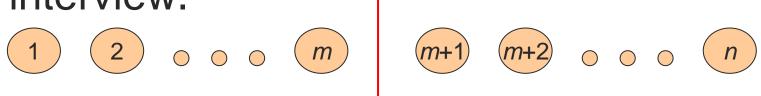
- There can be at most n(n-1)/2 distinct min-cut sets.
- Hint: [Theorem 1.8] The algorithm outputs a min-cut set with probability at least 2/n(n-1).



Hint: Indicator variable/linearity of expectation.

- (a) What is the probability that X = Y?
- (b) What is E[max(X, Y)]?
 - min(X, Y) is the random variable denoting the number of steps you see the first head. X+Y-min(X, Y) = max(X, Y).
 - Memory-less property of geometric random variable.

First, we give everyone a number card.
The number card means the order of interview.



- Choose the best grade from 1 to *m* : A.
- If someone after *m* better than A, accept him. Otherwise, we choose the last one.

- Sometimes, we may not get the best candidate.
 - The best one's number card is less than m+1.
 - A, the best grade we chose from 1 to *m*, is not too good.
- What is a "nice" *m*?
 - The second best candidate is in $1 \sim m$.