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Ball and Bin Model

e Simple Model
 Concrete Model




Applications

 Randomized load balancing
» Data allocation (flash)

» Hashing

* Routing



Maximum Load (Revisited)

Lemma: When n balls are thrown to n bins,
independently and uniformly at random,
the maximum load is at least In n/ln In n
with high probability (at least 1-1/n)

* Roughly, we have the maximum load
O(In n/In In n)



Can we do this better?
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random choice




ldea: multiple-choices allocation

 choose a small sample of bins at random
* inspect bins in and place ball into one of them
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The Power of Two Choices

Theorem: for every ball, choosing d
alternatives uniformly at random, the
maximum load is

O(lnlnn/In d)
with high probability.
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A
Cuckoo hashing .
. Multiple-Way hashing. o
 The new key is inserted in one S
of its two possible locations, y
"kicking out”, that is, displacing
any key that might already P
reside in this location.
A simple and practical scheme
with worst case constant lookup > W
time.
* Cuckoo hashing is invented at 2001, Bloom
filter is invented at 1970. 10




Cuckoo Hashing Examples
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Cuckoo Hashing Properties

» Worst case constant lookup time.

« Simple to build, design.

* Lookups using two probes (optimal).
» Efficient in the average case.

e However, it needs some theoretical
assumptions.
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The Power of Two Choices

Theorem: for every ball, choosing d
alternatives uniformly at random, the
maximum load is

O(lnlnn/In d)
with high probability.
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Let's try to prove this

* Challenges:

- This proof is not so difficult in technical
detall.

- However, there are a lot of magic
number.

— And it adapts circuitous approach.
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o h(t) : the height of a ball. the height h(t) of a
ball ¢ means the ball t is the h(t)-th ball thrown
into the bin.

o vi(t) : the number of balls with height at least /
after throwing the t-th ball.

o ui(t) : the number of bins with at least /i balls
after throwing the t-th ball.
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Proportion of bins

o Observe that Vt.u;(t) < v;(t).

o Consider throwing n balls into n bins, we want to bound
u;(n)vi.

o We can get a trivial bound.



o Consider the Two-Choices method.

o Consider b; as another bound for v;(n), i.e.,
vi(t) < vi(n) < by

o When we threw t-th ball, the case that
h(t) = i + 1 occurs only if both two picked bins

have i/ balls. The probability of this case is
b bi=1 (b,-)2_

n n n

o In general, for d-choices method, the probability
z)d

p; of this case is at most (
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o If we look this process as a binomial random
variable B(n, p;) where each Bernoulli trail is
defined by Pr(X; = i+ 1) = p;, then we can use
Chernoff bound to realize the bound b;.

\d
o E[B(n, pi)] = npi = n (%)
o By Chernoff bound, we have
:)I’(B(ﬂj pr) > 2”P£) < e—np,-/?)_

o Hence we have a bound b, 1 ~ 2np; = 2n (%)d
with high probability.
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o Let b4 — %.
pad L
o bis1 ~2n () is an recurrence relation indeed.
By solving this, we can get the formula.

n
bitq4 < d
o [ hus one might guess that the maximum load is
__Ininn as bg o 1
§ = In d n n'

o Note that we might derive difference bounds f;
by using larger derivation in Chernoff bound.

23



o However, b; is an approximated bound, we can't
guarantee that v;(n) < b; always.

o We have Pr(v4(n) < by) = Pr(va(n) < 7) =1

o If we defined an event E; for that (v;(n) < b;)
holds, what the value i* is such that those
events start to fail? Does it provide good

bound? How to estimate it?
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o An idea is to guess a value to estimate /*.

o Let's pick i/ as the smallest value such that
b+ < 12Inn, i.e., we guess that E; doesn’'t hold
when b; become too small.

o And we hope this is also bounded with high
probability.
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o By Chernoff bound, we have

Pr(B(n, p;) > bix1| E)) < Pr(B(n,p;) > 2np; | E;)
1

ePil3Pr(E;)

<

o Since we want to bound this with high
probability, we should choose the proper 1.

e Sincw np; = 6In n, we can bound it with
0 (i)
nPrE) /)
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o Now we try to derive the value /*. Since
b;.1 = 2np;, we have

bii_ d
P;*:( L 4)“) <1 Obhnn

n

e Since % < b “ by Solvmg 3
f*:lnlnn/lnd+0( ) = (n)
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o We will skip the details here .. ..

(E)) is small
enough, then eventually we will derive the

bound that Pr(vy > 1) = o(+).

o | he details please refer to the textbook.

o However, if we can prove O ( 2P1’
n
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If you are interested In...

we can do it even better

Inlnn

d In ¢d




Algorithm ALWAYS-GO-LEFT

e partition set of bins into d > 2 groups of same size

e choose one alternative from each group at random

f — — — O
N = - )
/ \
|
Af B Yc

) | ollay| L[

e give ball to alternative with smallest load

e in case of a tie, ALWAYS-GO-LEFT



THANK YOU
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