Randomized Algorithm Tutorial 4

Joyce

2008-11-20

-Outline

Solution for Assignment 3

Question 1 Question 2 Question 3 Question 4

Randomized Algorithm
Outline
Question 1

[Question 1]:

- Let $X \sim \text{Poisson}(\mu)$ denote the number of errors.
- ► Each error is independently a grammatical error with probability p and a spelling error with probability 1 - p.
- ▶ Let *Y* and *Z* be random variables representing the number of grammatical and spelling errors (respectively).

Prove Y and Z are Poisson random variables with means μp and $\mu(1-p)$, respectively. Also prove that Y and Z are independent.

[Solution]:

We first show that both Y and Z are Poisson random variables.

$$Pr(Y = k) = \sum_{m=k}^{\infty} Pr(Y = k \mid X = m) Pr(X = m)$$

$$= \sum_{m=k}^{\infty} {\binom{m}{k}} p^{k} (1-p)^{m-k} \frac{e^{-\mu} \mu^{m}}{m!}$$

$$= \sum_{m=k}^{\infty} \frac{m!}{k! (m-k)!} p^{k} (1-p)^{m-k} \frac{e^{-\mu} \mu^{m}}{m!}$$

$$= \frac{(\mu p)^{k} e^{-\mu}}{k!} \sum_{m=k}^{\infty} \frac{(1-p)^{m-k} \mu^{m-k}}{(m-k)!}$$

$$= \frac{(\mu p)^{k} e^{-\mu}}{k!} e^{\mu (1-p)} = \frac{(\mu p)^{k} e^{-\mu p}}{k!}.$$

Randomized Algorithm	
Outline	
└─Question 1	

By similar steps, we can also get

$$\Pr(Z = k) = (\mu(1 - p))^k e^{-(1 - p)\mu} / k!.$$

 $\Rightarrow Y \sim \text{Poisson}(\mu p) \text{ and } Z \sim \text{Poisson}(\mu(1-p)).$

Next, we show that Y and X are independent:

$$Pr(Y = k \cap Z = j) = Pr(X = k + j)Pr(Y = k | X = k + j)$$
$$= \frac{\mu^{k+j}e^{-\mu}}{(k+j)!} {\binom{k+j}{k}} p^k (1-p)^j$$
$$= \frac{(\mu p)^k e^{-\mu p}}{k!} \frac{(\mu (1-p))^j e^{-\mu (1-p)}}{j!}$$
$$= Pr(Y = k)Pr(Z = j).$$

Randomized Algorithm	
Outline	
└─Question 1	

By similar steps, we can also get

$$\Pr(Z = k) = (\mu(1 - p))^k e^{-(1 - p)\mu} / k!.$$

 $\Rightarrow Y \sim \text{Poisson}(\mu p) \text{ and } Z \sim \text{Poisson}(\mu(1-p)).$

Next, we show that Y and X are independent:

$$Pr(Y = k \cap Z = j) = Pr(X = k + j)Pr(Y = k | X = k + j)$$
$$= \frac{\mu^{k+j}e^{-\mu}}{(k+j)!} {\binom{k+j}{k}} p^k (1-p)^j$$
$$= \frac{(\mu p)^k e^{-\mu p}}{k!} \frac{(\mu (1-p))^j e^{-\mu (1-p)}}{j!}$$
$$= Pr(Y = k)Pr(Z = j).$$

[Question 2]:

Let $Z \sim \text{Poisson}(\mu)$, where $\mu \ge 1$ is an integer. (a) Show that

$$\Pr({Z}=\mu+h)\geq \Pr({Z}=\mu-h-1)$$
 for $0\leq h\leq \mu-1.$

(b) Show that $\Pr(Z \ge \mu) \ge 1/2$.

[Solution]:

(a) By definition, for any non-negative integer k,

$$\Pr(Z=k)=e^{-\mu}\mu^k/k!.$$

Then, we have

$$\frac{\Pr(Z = \mu + h)}{\Pr(Z = \mu - h - 1)} = \frac{\mu^{2h+1}}{(\mu - h)(\mu - (h - 1))\cdots(\mu + h)}$$
$$= \frac{\mu^2}{\mu^2 - h^2} \cdot \frac{\mu^2}{\mu^2 - (h - 1)^2} \cdots \frac{\mu^2}{\mu^2 - 1^2} \cdot \frac{\mu}{\mu} \ge 1.$$
$$\Rightarrow \Pr(Z = \mu + h) \ge \Pr(Z = \mu - h - 1).$$

Randomized Algorithm
Outline
Question 2

(b) By Part (a), we can easily see that

$$A=\Pr(Z<\mu)=\sum_{k=0}^{\mu-1}\Pr(Z=k)\leq\sum_{k=\mu}^{2\mu-1}\Pr(Z=k)=B.$$

Also, $A + B \leq 1$, so that

 $A \le 1/2.$

Thus,

$$\Pr(Z \ge \mu) = 1 - A \ge 1/2.$$

[Question 3]:

Suppose $E\left[f(X_1^{(m)},...,X_n^{(m)})\right]$ is monotonically increasing in *m*. (a) Show that

$$E\left[f(Y_{1}^{(m)},...,Y_{n}^{(m)})\right] \geq E\left[f(X_{1}^{(m)},...,X_{n}^{(m)})\right] \Pr(\sum Y_{i}^{(m)} \geq m).$$

(b) Then, show that

$$2 \cdot \mathrm{E}\left[f(Y_1^{(m)},...,Y_n^{(m)})\right] \geq \mathrm{E}\left[f(X_1^{(m)},...,X_n^{(m)})\right].$$

Outline

 ${ \sqsubseteq}_{ \mathsf{Question 3} }$

[Solution]:

$$\begin{aligned} \mathbf{a} & \qquad \mathbf{E} \left[f(Y_1^{(m)}, ..., Y_n^{(m)}) \right] \\ &= \sum_{k \ge 0} \mathbf{E} \left[f(Y_1^{(m)}, ..., Y_n^{(m)}) \mid \sum Y_i^{(m)} = k \right] \Pr(\sum Y_i^{(m)} = k) \\ &= \sum_{k \ge 0} \mathbf{E} \left[f(X_1^{(k)}, ..., X_n^{(k)}) \right] \Pr(\sum Y_i^{(m)} = k) \\ &\ge \sum_{k \ge m} \mathbf{E} \left[f(X_1^{(k)}, ..., X_n^{(k)}) \right] \Pr(\sum Y_i^{(m)} = k) \\ &\ge \sum_{k \ge m} \mathbf{E} \left[f(X_1^{(m)}, ..., X_n^{(m)}) \right] \Pr(\sum Y_i^{(m)} = k) \\ &= \mathbf{E} \left[f(X_1^{(m)}, ..., X_n^{(m)}) \right] \Pr(\sum Y_i^{(m)} = m) \end{aligned}$$

Randomized Algorithm	
Outline	
Question 3	

(b) • Let $Z = \sum Y_i^{(m)} \Rightarrow Z \sim \text{Poisson}(m)$. • By Question 1,

$$Pr(Z \geq m) \geq 1/2.$$

▶ Combining with Part (a), the result follows, since

$$\Pr(\sum Y_i^{(m)} \ge m) = \Pr(Z \ge m) \ge 1/2.$$

Randomized Algorithm	
Outline	
Question 4	

[Question 4]:

- Consider *n* balls thrown randomly into *n* bins.
- Let $X_i = 1$ if the *i*-th bin is empty and 0 otherwise.

• Let
$$X = \sum_{i=1}^n X_i$$
.

We want to get Chernoff bound for the number of empty bins. Instead of using Poisson approximation, we relate X with a binomial random variable Y defined as follows:

• Let Y_i be independent Bernoulli random variable such that $Y_i = 1$ with probability $p = (1 - 1/n)^n$.

• Let
$$Y = \sum_{i=1}^{n} Y_i$$
.

• Note:
$$p = \Pr(X_i = 1)$$

Randomized Algorithm
Outline
└─Question 4

(a) Show that for any $k \ge 1$,

 $\mathbf{E}[X_1X_2\cdots X_k] \leq \mathbf{E}[Y_1Y_2\cdots Y_k].$

(b) Show that for any $j_1, j_2, \ldots, j_k \in \mathbb{N}$,

$$X_1^{j_1}X_2^{j_2}\cdots X_k^{j_k}=X_1X_2\cdots X_k.$$

(c) Show that for all $t \ge 0$,

$$\mathsf{E}[e^{tX}] \leq \mathsf{E}[e^{tY}].$$

(d) Derive a Chernoff bound for $Pr(X \ge (1 + \delta)E[X])$.

(a)
$$E[X_1X_2\cdots X_k] = Pr(X_1 = 1 \cap X_2 = 1 \cap \ldots \cap X_k = 1)$$

= $Pr(\text{each ball is in the other } n - k \text{ bins})$
= $\left(\frac{n-k}{n}\right)^n$.

$$\operatorname{E}[Y_1Y_2\cdots Y_k]=\operatorname{Pr}(Y_1=1\cap Y_2=1\cap\ldots\cap Y_k=1)=\left(1-\frac{1}{n}\right)^{kn}.$$

By Bernoulli's inequality, we have

$$\left(\frac{n-k}{n}\right) = 1 - \frac{k}{n} \le \left(1 - \frac{1}{n}\right)^{k}.$$
$$\Rightarrow \quad \operatorname{E}[X_{1}X_{2}\cdots X_{k}] \le \quad \operatorname{E}[Y_{1}Y_{2}\cdots Y_{k}].$$

(a) An alternative solution (by induction):

$$\begin{split} \mathrm{E}[X_1 X_2 \cdots X_k X_{k+1}] &= \mathrm{E}[X_1 X_2 \cdots X_k \mid X_{k+1} = 1] \mathrm{Pr}(X_{k+1} = 1) \\ &\leq \mathrm{E}[X_1 X_2 \cdots X_k] \mathrm{Pr}(X_{k+1} = 1) \quad \text{(why?)} \\ &\leq \left(1 - \frac{1}{n}\right)^{(k+1)n} \\ &= \mathrm{E}[Y_1 Y_2 \cdots Y_k Y_{k+1}]. \end{split}$$

Randomized Algorithm	
Outline	
└─Question 4	

(b) Since X_i is an indicator, we have: 1. If $X_i = 1$ for all i, $X_1^{j_1} X_2^{j_2} \cdots X_k^{j_k} = X_1 X_2 \cdots X_k = 1;$ 2. Otherwise, $X_i = 0$ for some i, so that $X_1^{j_1} X_2^{j_2} \cdots X_k^{j_k} = X_1 X_2 \cdots X_k = 1;$

Thus, in any case, $X_1^{j_1}X_2^{j_2}\cdots X_k^{j_k}=X_1X_2\cdots X_k$.

(c)
$$E[e^{tX}] = E[1+tX + \frac{(tX)^2}{2!} + ...] = E[1] + tE[X] + \frac{t^2}{2!}E[X^2] + ...$$

By (b), we can show that for all integer $r \ge 1$,
 $E[X^r] = E[(X_1 + X_2 + ... + X_n)^r] \le E[(Y_1 + Y_2 + ... + Y_n)^r] = E[Y^r]$
For instance, when $r = 2$,
 $E[X^2] = E[(X_1 + X_2 + ... + X_n)^2] = E\left[\sum_{i} X_i^2 + \sum_{j \ne k} X_j X_k\right]$
 $\le E\left[\sum_{i} Y_i^2 + \sum_{j \ne k} Y_j Y_k\right] = E[(Y_1 + Y_2 - ... + Y_n)^2] = E[Y^2]$

Thus, $E[e^{tX}] \leq E[e^{tY}]$

(c)
$$E[e^{tX}] = E[1+tX+\frac{(tX)^2}{2!}+...] = E[1]+tE[X]+\frac{t^2}{2!}E[X^2]+...$$

By (b), we can show that for all integer $r \ge 1$,
 $E[X^r] = E[(X_1+X_2+...+X_n)^r] \le E[(Y_1+Y_2+...+Y_n)^r] = E[Y^r]$
For instance, when $r = 2$,
 $E[X^2] = E[(X_1+X_2+...+X_n)^2] = E\left[\sum_i X_i^2 + \sum_{j \ne k} X_j X_k\right]$
 $\le E\left[\sum_i Y_i^2 + \sum_{j \ne k} Y_j Y_k\right] = E[(Y_1+Y_2...+Y_n)^2] = E[Y^2].$

Thus, $E[e^{tX}] \leq E[e^{tY}]$

(d) Let
$$\mu = E[X] = E[Y] = np$$
. So for any $t > 0$, we have:

$$\Pr(X \ge (1+\delta) \mathbb{E}[X]) \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}} \le \frac{\mathbb{E}[e^{tY}]}{e^{t(1+\delta)\mu}}$$

On the other hand,

$$\operatorname{E}[e^{tY}] = ((1-p) + pe^t)^n \le e^{np(e^t-1)} \le e^{(e^t-1)\mu}$$

Combining, and then setting $t = \ln(1 + \delta)$, we get

$$\Pr(X \ge (1+\delta) \operatorname{E}[X]) \le rac{e^{(e^t-1)\mu}}{e^{(1+\delta)t\mu}} = \left(rac{e^{\delta}}{(1+\delta)^{(1+\delta)}}
ight)^{\mu}$$

Thank you