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Question 1

[Question 1]:
Let S be a set of n numbers. The median-finding algorithm
discussed in class finds the median of S with high probability, and
its running time is 2n + o(n).
Can you generalize this algorithm so that it can find the kth
largest item of S for any given value of k?
Prove that your resulting algorithm is correct, and bound its
running time.
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Question 1

[Solution]:
We first consider the case where k ≤ n/2.
For this case, we scan the n items and obtain the minimum value,
say, t. Then, we add n − 2k + 1 items to the set of n items, each
item having a value equal to t. It is easy to check that the kth
largest item among the original n items will be the median of the
new set of 2n − 2k + 1 items.
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Question 1

[Cont.]: Therefore, we can apply the median-finding algorithm for
the new set to obtain the desired kth largest item of the original
set.
The running time for this case is O(n). More precisely, we have
spent n comparisons to find the minimum element, and at most
4n + o(n) further comparisons to find the median. The total time
is thus at most 5n + o(n).
Could it be lower?
In fact, it is easy to see that we do not need to explicitly add the
n − 2k + 1 items.
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[Cont.]: Therefore, we can apply the median-finding algorithm for
the new set to obtain the desired kth largest item of the original
set.
The running time for this case is O(n). More precisely, we have
spent n comparisons to find the minimum element, and at most
4n + o(n) further comparisons to find the median. The total time
is thus at most 5n + o(n).
Could it be lower?
In fact, it is easy to see that we do not need to explicitly add the
n − 2k + 1 items.
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Question 1

[Cont.]: What we need to do is to modify the sampling algorithm a
bit, so that with probability p = n/(2n − 2k + 1), we are selecting
an integer from the original n items, and with probability 1− p, we
are selecting the minimum value t. Consequently, the time will be
at most 3n + o(n).
For the case where k > n/2, we proceed by adding items with
maximum value instead.
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Question 2

[Question 2]:
The weak law of large numbers state that, if X1, X2, X3, ... are
independent and identically distributed random variables with finite
mean µ and finite standard deviation σ,
then for any constant ε > 0 we have

lim
n→∞Pr

(∣∣∣∣
X1 + X2 + X3 + ... + Xn

n
− µ

∣∣∣∣ > ε

)
= 0

Use Chebyshev’s inequality to prove the weak law of large numbers.
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Question 2

[Solution]:
Firstly,

Pr

(∣∣∣∣
X1 + X2 + X3 + ... + Xn

n
− µ

∣∣∣∣ > ε

)

= Pr(|(X1 + X2 + ... + Xn)− nµ| > nε).

By Chebyshev’s inequality and the independence of Xi ’s, we have:

Pr(|(X1 + X2 + ... + Xn)− nµ| > nε)

≤ Var[X1 + X2 + ... + Xn]

(nε)2
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[Cont.]:

Var[X1 + X2 + ... + Xn]

(nε)2
=

Σn
i=1Var[Xi ]

n2ε2
=

nσ2

n2ε2
=

σ2

nε2
.

Combining, we have

lim
n→∞Pr

(∣∣∣∣
X1 + X2 + X3 + ... + Xn

n

∣∣∣∣− µ > ε

)

≤ lim
n→∞

σ2

nε2
= 0

which completes the proof of the weak law of large numbers.
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[Question 3]:

1. Determine the moment generating function for the binomial
random variable Bin(n, p).

2. Let X be a Bin(n, p) random variable and Y be a Bin(m, p)
random variable. Suppose that X and Y are independent. Use
part (a) to determine the moment generating function of
X + Y .

3. What can we conclude from the form of the moment
generating function of
X + Y ?
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Question 3

[Solution]:
(a) Given X ∼ Bin(n, p). Then, the MGF of X , MX (t), can be
calculated as follows:
MX (t) = E[etX ]

= Σn
k=0Pr(X = k)etk

= Σn
k=0

(n
k

)
pk(1− p)n−ketk

= Σn
k=0

(n
k

)
(pet)k(1− p)n−k ( Binomial theorem)

= (pet + 1− p)n

(Binomial theorem: Σn
k=0

(n
k

)
pk(1− p)n−k = (p + (1− p))n.)
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[Cont.]:
(b) Since X and Y are independent, the MGF of X + Y is thus:

MX+Y (t) = MX (t)×MY (t) = (pet + 1− p)n+m.
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[Cont.]:
(c) The MGF in part (b) is the same as the MGF of a binomial
random variable with parameters n + m and p. Thus,
X + Y ∼ Bin(n + m, p).
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[Question 4]:
In a wireless communication system, each receiver listens on a
specific frequency. The bit b(t) sent at time t is represented by a 1
or −1.

1
 R


S
e
n
d
e
r
s


R
e
c
e
i
v
e
r
R




Randomized algorithm

Solution for assignment 2

Question 4

Unfortunately, noise from other nearby communications can affect
the receiver’s signal.
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Question 4

There are n senders and the ith has strength pi ≤ 1 The receiver
obtains the signal s(t) given by

s(t) = b(t) + Σn
i=1pibi (t)

If s(t) is closer to 1 than −1, the receiver assumes that the bit
sent at time t was a 1; otherwise, it was a −1.
Assume that all the bit bi (t) can be considered independent,
uniform random variables. Give a Chernoff bound to estimate the
probability that the receiver makes an error in determining b(t).
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Question 4

[Solution]:
Let X be the effect of combined noise. We may express X by pi

and bi as:
X = p1b1 + p2b2 + ... + pnbn.

Also, µ = E[X ] = 0.
From the question, we see that if the combined noise |X | < 1, the
signal can be decoded properly. Thus,

Pr(receiver makes an error) ≤ Pr(|X | ≥ 1).

Below, we shall give a Chernoff bound for Pr(|X | ≥ 1). First, we
calculate the moment generating function of each pibi :

Mpibi
(t) = E[etpibi ] =

1

2

(
etpi + e−tpi

)

=
∑

k≥0

(tpi )
2k

(2k)!

≤ et2p2
i /2.
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[Cont.]:
This implies

MX (t) ≤ et2K/2, where K =
∑

i p
2
i .

Thus, we have:

Pr(|X | ≥ 1) = 2Pr(X ≥ 1) (X is symmetric around mean µ = 0)

= 2 Pr(etX ≥ et)

≤ 2 E[etX ]

et
=

2MX (t)

et

≤ 2et2K/2

et
.

The last term is minimized when we set t = 1/K , so that we
obtain:

Pr(|X | ≥ 1) ≤ 2e−1/(2K).
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[Question 5]:
Let J1, J2, · · · , Jn be a set of jobs, where the i-th job
Ji has an execution time of Li seconds, 0 ≤ Li ≤ 1.
Suppose we have m servers, and we can assign the n jobs to run
on them. The load of a server is the total execution time of
all jobs assigned to it, and our goal is to find an assignment so
that the load is as balanced as possible.
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Question 5

[Solution]:
(a) The expected load of each server is:

L̄ =

∑n
i=1 Li

m
.
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Question 5

[Cont.]:
(b) Let Rj denote the load assigned to server j . Then we have
E[Rj ] = L̄.
On the other hand, let Rj ,i be a random variable such that it has
value Li if job Ji is assigned to server j , and it has value 0
otherwise. Then, we see that:

Rj = Rj ,1 + Rj ,2 + · · ·+ Rj ,n.
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[Cont.]:
(b) Since Rj is the sum of independent random variables whose
range is between 0 and 1, we can apply Theorem 1 immediately,
and obtain:

Pr(Rj ≥ cL̄) = Pr(Rj ≥ c E[Rj ])

≤ e−α E[Rj ] = e−αL̄,

where α = c ln c + 1− c .
Thus by union bound,

Pr(some server has load at least cL̄) ≤ me−αL̄.
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[Cont.]:
(c) Given n = 100K , m = 10, and the average job execution time
is 0.25. Then Σn

i=1Li = 0.25n = 25K and L̄ = 2500.

Pr(all servers have load at most 1.1L̄) ≥ 1− e−9.

means c = 1.1, thus α is about 0.004841.
By the result in part (b), we see that

Pr(some server has load at least 1.1L̄) ≤ 10 e−0.004841×2500 ≤ e−9.

Thus, we get the desired bound that

Pr(all servers have load at most 1.1L̄) ≥ 1− e−9.
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[Question 6] (Bonus):
This question attempts to prove Theorem 1. Part (a) establishes a
useful fact, while the remaining parts proceed to give the proof.
(a) Let c and λ be two positive real numbers, with c > 1 and
0 ≤ λ ≤ 1.
Show that for any z ∈ [−λ, 1− λ],

cz ≤ c−λ(1 + λ(c − 1)) + z(c1−λ − c−λ).

Furthermore, argue that

cz ≤ c−λeλ(c−1) + z(c1−λ − c−λ).
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(b) Next, we define ∆i = Xi − E[Xi ]. (Recall that each Xi is a
random variable whose value is in between 0 and 1.) Thus, we have

−E[Xi ] ≤ ∆i ≤ 1− E[Xi ] and E[∆i ] = E [Xi − E[Xi ]] = 0.

Let ∆ =
∑n

i=1 ∆i . Show that

Pr(X ≥ cE[X ]) = Pr(∆ ≥ (c − 1)E[X ]) ≤ E[c∆]

c(c−1)E[X ]
.
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(c) Using Part (a), show that if we set λ = E[Xi ],

E[c∆i ] ≤ c−λeλ(c−1) = eλ(c−1−ln c).

(d) Argue that E[c∆] ≤ eE[X ](c−1−ln c) and complete the proof of
the theorem.
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[Solution]:
(a)Let f (z) = c−λ(1 + λ(c − 1)) + z(c1−λ − c−λ)− cz .
We may get f ′(z) = c1−λ − c−λ − zcz−1 and
f ′′(z) = −z(z − 1)cz−2.
Observe that f ′′(z) < 0 when z ∈ [−λ, 0) and f ′′(z) ≥ 0 when
z ∈ [0, 1− λ]. This implies f ′(z) achieves the minimum value at
z = 0. In other words:

f ′(z) ≥ f ′(0) = c1−λ − c−λ ≥ 0.

The above statement shows that f (z) is monotonically increasing,
so that

f (z) ≥ f (−λ) = 0.

Thus, cz ≤ c−λ(1 + λ(c − 1)) + z(c1−λ − c−λ), so that

cz ≤ c−λeλ(c−1) + z(c1−λ − c−λ).
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[Cont.]:
(b)

Pr(X ≥ c E[X ]) = Pr

(∑

i

Xi ≥ c E[X ]

)

= Pr

(∑

i

(∆i + E[Xi ]) ≥ c E[X ]

)

= Pr(∆ + E[X ] ≥ c E[X ])

= Pr(∆ ≥ (c − 1)E[X ])

= Pr(c∆ ≥ c(c−1)E[X ])

≤ E[c∆]

c(c−1)E[X ]
.
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[Cont.]:
(c)By setting λ = E[Xi ],

E[c∆i ] ≤ E[c−λeλ(c−1) + ∆i (c
1−λ − c−λ)]

= E[c−λeλ(c−1)] (since E[∆i ] = E[Xi − E[Xi ]] = 0)

= c−λeλ(c−1) (since λ = E[Xi ] is a constant)

= eλ(c−1−ln c).
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[Cont.]:
(d)Since ∆1, ∆2, . . . , ∆n are independent, we have:

E[c∆] =
∏

E[c∆i ] ≤
∏

eE[Xi ](c−1−ln c) = eE[X ](c−1−ln c).

Combining this with part (b), we have:

Pr(X ≥ c E[X ]) ≤ eE[X ](c−1−ln c)

c(c−1)E[X ]

=
eE[X ](c−1−ln c)

e(c ln c−ln c)E[X ]

= eE[X ](c−1−ln c−c ln c+ln c)

= e−α E[X ],

where α = c ln c + 1− c .
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Question 1

[Question 1]: Let X be a Poisson random variable with mean µ,
representing the number of errors on a page of this book. Each
error is independently a grammatical error with probability p and a
spelling error with probability 1− p. If Y and Z be random
variables representing the number of grammatical and spelling
errors(respectively) on a page of this book, prove that Y and Z are
Poisson random variables with means µp and µ(1− p),
respectively. Also prove that Y and Z are independent.
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[Hint]:
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By definition of Poisson random variable with some condition. Try
to show Pr(Y = k) =? and Pr(Z = k) =?
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[Question 2]: Let Z be a Poisson random variable of mean µ,
where µ ≥ 1 is an integer.

1. Show that Pr(Z = µ + h) ≥ Pr(Z = µ− h − 1) for
0 ≤ h ≤ µ− 1.

2. Using part (a), argue that Pr(Z ≥ µ) ≥ 1/2.
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[Hint]:
We may use the definition of Poisson distribution in page 14 of
Lecture Note 13.
Definition:
A discrete Poisson random variable X with parameter µ is given by
the following probability distribution for r = 0, 1, 2, ...:

Pr(X = r) = e−µµr/r !
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Question 3

[Question 3]:In Page 14 of Lecture Notes 14 we showed that, for
any nonnegative functions f ,

E[f (Y
(m)
1 , ..., Y

(m)
n )] ≥ E[f (X

(m)
1 , ...,X

(m)
n )]Pr(ΣY

(m)
i = m)

1. Now suppose we further know thatE[f (X
(m)
1 , ...,X

(m)
n )] is

monotonically increasing in m. Show that

E[f (Y
(m)
1 , ...,Y

(m)
n )] ≥ E[f (X

(m)
1 , ...,X

(m)
n )]Pr(ΣY

(m)
i ≥ m)

2. Combining part (a) and part (b) with the results in Question
2, prove the theorem in Page 20 of Lecture Notes 14.
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[Hint]:
Re-examine the proof of Page 15 in Lecture Notes 14 (and show
tighter bound when we know f (x1, x2, ..., xn) is monotonically
increasing in m)



Randomized algorithm

Hint for assignment 3

Question 4

[Question 4]: We consider another way to obtain Chernoff-like
bound in the balls-and-bins setting without using the theorem in
Page 13 of Lecture 14.
Consider n balls thrown randomly into n bins. Let Xi = 1 if the
i-th bin is empty and 0 otherwise. Let X = Σn

i=1Xi .
Let Yi be independent Bernoulli random variable such that Yi = 1
with probability p = (1− 1/n)n. Let Y = Σn

i=1Yi .

1. Show that E[X1X2 · · ·Xk ] ≤ E[Y1Y2 · · ·Yk ] for any k ≥ 1.

2. Show that X j1
1 X j2

2 · · ·X jk
k = X1X2 · · ·Xk for any

j1, j2, . . . , jk ∈ N.

3. Show that E[etX ] ≤ E[etY ] for all t ≥ 0.
Hint: Use the expansion for ex and compare E[etX ] to E[etY ].

4. Derive a Chernoff bound for Pr(X ≥ (1 + δ)E[X ]).
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Question 4

[Hint]:
Add oil.
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