1. Ans.

 (a) We define T_i as the number of steps we can return to state i while we start at state i. Then some of the possible values of each T_i are listed as follows:

 $T_0 = 1, 2, \cdots$

 $T_1 = 2, 3, \cdots$

 $T_2 = 1, 2, \cdots$

 Since the gcd of elements in T_0, T_1, and T_2 are all 1, this implies that the Markov chain is aperiodic.

 On the other hand, we can easily find a cycle traversing each state at least once. Thus, the graph is strongly connected, so that the Markov chain is also irreducible.

 (b) Since the Markov chain is aperiodic and irreducible, a stationary distribution exists which is also unique. Suppose such a stationary distribution is $p = \langle x, y, z \rangle$. By the transition probabilities, we get following equations.

 $x = 0.4x + 0.7y$

 $y = 0.6x + 0.2z$

 $z = 0.8z + 0.3y$

 By some calculation, we get $p = \langle \frac{7}{22}, \frac{6}{22}, \frac{9}{22} \rangle$.

2. Ans. We use the following notation for random walk on any undirected graph $G = (V, E)$:

 - For any two vertices $u, v \in V$, $H_{u,v}$ denotes the expected hitting time from u to v.
 - For any vertex $v \in V$, $C_v(G)$ denotes the cover time from v.
 - $C(G) = \max_v C_v(G)$.

 (a) Lower bound:

 Since $H_{v,u} = \Theta(n^2)$ (see Lecture 21 pg. 24), we get $C_v(G) = \Omega(n^2)$.

 Upper bound:

 Let w be the neighbor node of u on the path from u to v. Let x be a node on the clique which is not u.

 $C_v(G) \leq H_{v,u} + \text{starting at } u \text{ and visit all vertices of the clique} \leq H_{v,u} + 1/(n/2) \times (1 + C_{v}(G)) + (n/2 - 1)/(n/2) \times (1 + C_x(G)) \leq H_{v,u} + 1/(n/2) \times (1 + C(G)) + (n/2 - 1)/(n/2) \times (1 + C_x(G))$
expected steps leaving the clique from \(u \) and coming back to \(u \) \() \)

\[
H_{v,u} + 1/(n/2) \times O(n^3)
\]

Lecture 23, Page 28

\[
+(n/2 - 1)/(n/2) \times (\Theta(n \log n))
\]

coupon collecting problem

\[
\Theta(n \log n) \times (1/n) \times 1/(n/2) \times O(n^2)
\]

expected times hitting \(u \)

\[
O(n^2)
\]

expected times leaving the clique

\[
\]

expected steps coming back to \(u \)

\[
= O(n^2).
\]

By lower bound and upper bound, the expected covering time of a random walk starting at \(v \) is \(\Theta(n^2) \)

(b) Upper bound:

The \(C_u(G) \) is bounded above by \(O(|V| \cdot |E|) = O(n^3) \) (see Lecture 23, Page 28).

Lower bound:

Since covering the whole graph must take more time than covering part of the graph,
\(C_u(G) \geq H_{u,v} \).

Let \(w \) be the neighbor node of \(u \) on the path from \(u \) to \(v \). Let \(x \) be a node on the clique which is not \(u \).

The value \(H_{u,v} \) can be expressed as

\[
H_{u,v} = 1/(n/2)(1 + H_w,v) + (1 - 1/(n/2))(1 + H_x,v).
\]

Let \(p \) be the probability that we reach \(u \) before reaching \(v \), starting from \(w \). Obviously, we have

\[
H_{w,v} \geq pH_{u,v}.
\]

From the Gambler’s Ruin Problem, we can calculate \(p \) to be \((1 - 2/n) \) (by considering a fair-coin game of two players whose initial capitals are \(n/2 - 1 \) dollars and 1 dollar respectively). Hence,

\[
H_{w,v} \geq (1 - 2/n) H_{u,v}.
\]

Let \(r \) be the expected number of steps to reach \(u \), starting from another vertex \(x \) in the clique. We can calculate \(r = n/2 \) since the number of steps is a geometric random variable with parameter \(1/(n/2) \).

Thus, the value \(H_{x,v} \) can be expressed by:

\[
H_{x,v} = H_{u,v} + \Omega(n).
\]

Combining everything, we have

\[
H_{u,v} = \frac{1}{n/2}(1 + H_w,v) + (1 - \frac{1}{n/2})(1 + H_x,v)
\]

\[
\geq \frac{1}{n/2} \left(1 + (1 - \frac{2}{n})H_{u,v} \right) + (1 - \frac{1}{n/2}) (1 + H_{u,v} + \Omega(n))
\]

\[
= \left(1 - \frac{4}{n^2} \right) H_{u,v} + 1 + \Omega(n)
\]
By re-arranging terms, we get \(H_{u,v} = \Omega(n^3) \), which implies
\[
C_u(G) = \Omega(H_{u,v}) = \Omega(n^3).
\]

By lower bound and upper bound, the expected covering time of a random walk starting at \(u \) is \(\Theta(n^3) \).