1. (25%) Let X be a Poisson random variable with mean μ, representing the number of errors on a page of this book. Each error is independently a grammatical error with probability p and a spelling error with probability $1 - p$. If Y and Z be random variables representing the number of grammatical and spelling errors (respectively) on a page of this book, prove that Y and Z are Poisson random variables with means μp and $\mu (1 - p)$, respectively. Also prove that Y and Z are independent.

2. (25%) Let Z be a Poisson random variable of mean μ, where $\mu \geq 1$ is an integer.
 (a) Show that $\Pr(Z = \mu + h) \geq \Pr(Z = \mu - h - 1)$ for $0 \leq h \leq \mu - 1$.
 (b) Using part (a), argue that $\Pr(Z \geq \mu) \geq 1/2$.
 Hint: Use the definition of Poisson distribution $\Pr(Z = j) = e^{-\mu} \mu^j / j!$.

3. (25%) In Page 14 of Lecture Notes 14 we showed that, for any nonnegative functions f,
 $$\mathbb{E}[f(Y_1^{(m)}, ..., Y_n^{(m)})] \geq \mathbb{E}[f(X_1^{(m)}, ..., X_n^{(m)})]\Pr(\sum_{i=1}^n Y_i^{(m)} = m)$$
 (a) Now suppose we further know that $\mathbb{E}[f(X_1^{(m)}, ..., X_n^{(m)})]$ is monotonically increasing in m. Show that
 $$\mathbb{E}[f(Y_1^{(m)}, ..., Y_n^{(m)})] \geq \mathbb{E}[f(X_1^{(m)}, ..., X_n^{(m)})]\Pr(\sum_{i=1}^n Y_i^{(m)} \geq m)$$
 (b) Combining part (a) and part (b) with the results in Question 2, prove the following theorem, which appears in Page 20 of Lecture Notes 14:
 Theorem: Let $f(x_1, ..., x_n)$ be a nonnegative function such that $\mathbb{E}[f(X_1^{(m)}, ..., X_n^{(m)})]$ is monotonically increasing in m. Then
 $$\mathbb{E}[f(X_1^{(m)}, ..., X_n^{(m)})] \leq 2\mathbb{E}[f(Y_1^{(m)}, ..., Y_n^{(m)})]$$

4. (25%) We consider another way to obtain Chernoff-like bound in the balls-and-bins setting. Consider n balls thrown randomly into n bins. Let $X_i = 1$ if the i-th bin is empty and 0 otherwise. Let $X = \sum_{i=1}^n X_i$.
 Let Y_i be independent Bernoulli random variable such that $Y_i = 1$ with probability $p = (1 - 1/n)^n$. Let $Y = \sum_{i=1}^n Y_i$.
 (a) Show that $\mathbb{E}[X_1 X_2 \cdots X_k] \leq \mathbb{E}[Y_1 Y_2 \cdots Y_k]$ for any $k \geq 1$.
 (b) Show that $X_1^{j_1} X_2^{j_2} \cdots X_k^{j_k} = X_1 X_2 \cdots X_k$ for any $j_1, j_2, \ldots, j_k \in \mathbb{N}$.
 (c) Show that $\mathbb{E}[e^{tX}] \leq \mathbb{E}[e^{tY}]$ for all $t \geq 0$.
 Hint: Use the expansion for e^x and compare $\mathbb{E}[e^{tX}]$ to $\mathbb{E}[e^{tY}]$.
 (d) Derive a Chernoff bound for $\Pr(X \geq (1 + \delta)\mathbb{E}[X])$.

1