CS5314 RANDOMIZED ALGORITHMS

Homework 3 Due: 2:10 pm, November 20, 2008 (before class)

- 1. (25%) Let X be a Poisson random variable with mean μ , representing the number of errors on a page of this book. Each error is independently a grammatical error with probability p and a spelling error with probability 1 - p. If Y and Z be random variables representing the number of grammatical and spelling errors (respectively) on a page of this book, prove that Y and Z are Poisson random variables with means μp and $\mu(1-p)$, respectively. Also prove that Y and Z are independent.
- 2. (25%) Let Z be a Poisson random variable of mean μ , where $\mu \geq 1$ is an integer.
 - (a) Show that $\Pr(Z = \mu + h) \ge \Pr(Z = \mu h 1)$ for $0 \le h \le \mu 1$.
 - (b) Using part (a), argue that $Pr(Z \ge \mu) \ge 1/2$.

Hint: Use the definition of Poisson distribution $Pr(Z = j) = e^{-\mu} \mu^j / j!$.

3. (25%) In Page 14 of Lecture Notes 14 we showed that, for any nonnegative functions f,

$$\mathbf{E}[f(Y_1^{(m)}, ..., Y_n^{(m)})] \ge \mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})] \mathbf{Pr}(\Sigma Y_i^{(m)} = m)$$

(a) Now suppose we further know that $E[f(X_1^{(m)}, ..., X_n^{(m)})]$ is monotonically increasing in m. Show that

$$\mathbf{E}[f(Y_1^{(m)},...,Y_n^{(m)})] \ge \mathbf{E}[f(X_1^{(m)},...,X_n^{(m)})]Pr(\Sigma Y_i^{(m)} \ge m)$$

(b) Combining part (a) and part (b) with the results in Question 2, prove the following theorem, which appears in Page 20 of Lecture Notes 14: **Theorem:** Let f(x₁,...,x_n) be a nonnegative function such that E[f(X₁^(m),...,X_n^(m))] is monotonically increasing in m. Then

$$E[f(X_1^{(m)}, ..., X_n^{(m)})] \le 2E[f(Y_1^{(m)}, ..., Y_n^{(m)})]$$

4. (25%) We consider another way to obtain Chernoff-like bound in the balls-and-bins setting. Consider *n* balls thrown randomly into *n* bins. Let $X_i = 1$ if the *i*-th bin is empty and 0 otherwise. Let $X = \sum_{i=1}^{n} X_i$.

Let Y_i be independent Bernoulli random variable such that $Y_i = 1$ with probability $p = (1 - 1/n)^n$. Let $Y = \sum_{i=1}^n Y_i$.

- (a) Show that $\mathbb{E}[X_1 X_2 \cdots X_k] \leq \mathbb{E}[Y_1 Y_2 \cdots Y_k]$ for any $k \geq 1$.
- (b) Show that $X_1^{j_1} X_2^{j_2} \cdots X_k^{j_k} = X_1 X_2 \cdots X_k$ for any $j_1, j_2, \dots, j_k \in \mathbb{N}$.
- (c) Show that $E[e^{tX}] \leq E[e^{tY}]$ for all $t \geq 0$. *Hint:* Use the expansion for e^x and compare $E[e^{tX}]$ to $E[e^{tY}]$.
- (d) Derive a Chernoff bound for $Pr(X \ge (1 + \delta)E[X])$.