1. **Ans.** We first consider the case where \(k \leq n/2 \). For this case, we scan the \(n \) items and obtain the minimum value, say, \(t \). Then, we add \(n - 2k + 1 \) items to the set of \(n \) items, each item having a value equal to \(t \). It is easy to check that the \(k \)th largest item among the original \(n \) items will be the median of the new set of \(2n - 2k + 1 \) items. Therefore, we can apply the median-finding algorithm for the new set to obtain the desired \(k \)th largest item of the original set. The running time is \(O(n) \).

More precisely, we have spent \(n \) comparisons to find the minimum element, and at most \(4n + o(n) \) further comparisons to find the median. The total time is thus at most \(5n + o(n) \). In fact, it is easy to see that we do not need to explicitly add the \(n - 2k + 1 \) items. What we need to do is to modify the sampling algorithm a bit, so that with probability \(p = n/(2n - 2k + 1) \), we are selecting an integer from the original \(n \) items, and with probability \(1 - p \), we are selecting the minimum value \(t \). Consequently, the time will be at most \(3n + o(n) \).

For the case where \(k > n/2 \), we proceed by adding items with maximum value instead. The running time for this case is also \(O(n) \).

2. **Ans.** Firstly,

\[
\Pr \left(\left| \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n} - \mu \right| > \varepsilon \right) = \Pr(\left| (X_1 + X_2 + \ldots + X_n) - n\mu \right| > n\varepsilon).
\]

By Chebyshev’s inequality and the independence of \(X_i \)'s, we have:

\[
\Pr(\left| (X_1 + X_2 + \ldots + X_n) - n\mu \right| > n\varepsilon) \leq \frac{\text{Var}[X_1 + X_2 + \ldots + X_n]}{(n\varepsilon)^2} = \frac{\sum_{i=1}^{n}\text{Var}[X_i]}{n^2\varepsilon^2} = \frac{n\sigma^2}{n^2\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}.
\]

Combining, we have

\[
0 \leq \lim_{n \to \infty} \Pr \left(\left| \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n} - \mu \right| > \varepsilon \right) \leq \lim_{n \to \infty} \frac{\sigma^2}{n\varepsilon^2} = 0
\]

which completes the proof of the weak law of large numbers.

3. **Ans.**

(a) Given \(X \sim \text{Bin}(n, p) \). Then, the MGF of \(X \), \(M_X(t) \), can be calculated as follows:

\[
M_X(t) = \mathbb{E}[e^{tX}] = \sum_{k=0}^{n} \Pr(X = k) e^{tk}
\]
\[
\begin{align*}
&= \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} e^{tk} \\
&= \sum_{k=0}^{n} \binom{n}{k} (pe^t)^k (1-p)^{n-k} \\
&= (pe^t + 1 - p)^n
\end{align*}
\]

(b) Since \(X\) and \(Y\) are independent, the MGF of \(X + Y\) is thus:
\[
M_{X+Y}(t) = M_X(t) \times M_Y(t) = (pe^t + 1 - p)^{n+m}.
\]

(c) The MGF in part (b) is the same as the MGF of a binomial random variable with parameters \(n + m\) and \(p\). Thus, \(X + Y \sim \text{Bin}(n + m, p)\).

4. (20%) Ans.

Let \(X\) be the effect of combined noise. We may express \(X\) by \(p_i\) and \(b_i\) as:
\[
X = p_1b_1 + p_2b_2 + ... + p_nb_n.
\]

Also, \(\mu = \mathbb{E}[X] = 0\).

From the question, we see that if the combined noise \(|X| < 1\), the signal can be decoded properly. Thus,
\[
\Pr(\text{receiver makes an error}) \leq \Pr(|X| \geq 1).
\]

Below, we shall give a Chernoff bound for \(\Pr(|X| \geq 1)\). First, we calculate the moment generating function of each \(p_i b_i\):
\[
M_{p_i b_i}(t) = \mathbb{E}[e^{tp_i b_i}] = \frac{1}{2} \left(e^{tp_i} + e^{-tp_i} \right)
= \sum_{k \geq 0} \frac{(tp_i)^{2k}}{(2k)!}
\leq e^{t^2 p_i^2 / 2}.
\]

This implies
\[
M_X(t) \leq e^{t^2 K / 2}, \quad \text{where } K = \sum_i p_i^2.
\]

Thus, we have:
\[
\begin{align*}
\Pr(|X| \geq 1) &= 2 \Pr(X \geq 1) \quad \text{(X is symmetric around mean } \mu = 0) \\
&= 2 \Pr(e^{tX} \geq e^t) \\
&\leq \frac{2 \mathbb{E}[e^{tX}]}{e^t} = \frac{2M_X(t)}{e^t} \\
&\leq \frac{2e^{t^2 K / 2}}{e^t}.
\end{align*}
\]

The last term is minimized when we set \(t = 1/K\), so that we obtain:
\[
\Pr(|X| \geq 1) \leq 2e^{-1/(2K)}.
\]
5. Ans.

(a) The expected load of each server is:
\[
\bar{L} = \frac{1}{m} \sum_{i=1}^{n} L_i.
\]

(b) Let \(R_j\) denote the load assigned to server \(j\). Then we have \(E[R_j] = \bar{L}\).
On the other hand, let \(R_{j,i}\) be a random variable such that it has value \(L_i\) if job \(J_i\) is
assigned to server \(j\), and it has value 0 otherwise. Then, we see that:
\[
R_j = R_{j,1} + R_{j,2} + \cdots + R_{j,n}.
\]
Since \(R_j\) is the sum of independent random variables whose range is between 0 and 1, we can apply
Theorem 1 immediately, and obtain:
\[
\Pr(R_j \geq c\bar{L}) = \Pr(R_j \geq cE[R_j]) \leq e^{-\alpha E[R_j]} = e^{-\alpha \bar{L}},
\]
where \(\alpha = c \ln c + 1 - c\).
Thus by union bound,
\[
\Pr(\text{some server has load at least } c\bar{L}) \leq me^{-\alpha \bar{L}}.
\]

(c) Given \(n = 100K\), \(m = 10\), and the average job execution time is 0.25 sec. So we have:
\[
\sum_{i=1}^{n} L_i = 0.25n = 25K \quad \text{and} \quad \bar{L} = 2500.
\]
We hope to bound
\[
\Pr(\text{all servers have load at most } 1.1\bar{L})
\]
so that we set \(c = 1.1\), and consequently \(\alpha\) is about 0.004841.
By the result in part (b), we see that
\[
\Pr(\text{some server has load at least } 1.1\bar{L}) \leq 10 e^{-0.004841 \times 2500} \leq e^{-9}.
\]
Thus, we get the desired bound that
\[
\Pr(\text{all servers have load at most } 1.1\bar{L}) \geq 1 - e^{-9}.
\]

6. (Bonus: 10%)

(a) Let \(f(z) = c^{-\lambda}(1 + \lambda(c - 1)) + z(c^{1-\lambda} - c^{-\lambda}) - c^z\). So we get
\[
f'(z) = c^{1-\lambda} - c^{-\lambda} - \ln c \cdot c^z \quad \text{and} \quad f''(z) = -(\ln c)^2 \cdot c^z.
\]
Observe that \(f''(z) < 0\), which implies \(f'(z)\) is strictly decreasing. Then we see that:
\[
\begin{align*}
 f'(-\lambda) &= c^{1-\lambda} - c^{-\lambda} - \ln c \cdot c^{-\lambda} \\
 &= c^{1-\lambda} - (1 + \ln c) \cdot c^{-\lambda} \\
 &> c^{1-\lambda} - (c) \cdot c^{-\lambda} \quad \text{(since } 1 + \ln c < e^{\ln c} = c) \\
 &= 0 \\
\end{align*}
\]

\[
\begin{align*}
 f'(1 - \lambda) &= c^{1-\lambda} - c^{-\lambda} - \ln c \cdot c^{1-\lambda} \\
 &= -c^{-\lambda} + (1 - \ln c) \cdot c^{1-\lambda} \\
 &< -c^{-\lambda} + (1/c) \cdot c^{1-\lambda} \quad \text{(since } 1 - \ln c < e^{-\ln c} = 1/c) \\
 &= 0.
\end{align*}
\]

As \(f'(z) \) is continuous and strictly decreasing, the above statements indicates that \(f'(z) = 0 \) occurs when \(z \) is in \([-\lambda, 1 - \lambda] \), so that the global maximum of \(f(z) \) is attained at the corresponding value of \(z \).

Thus, it must be true that:

\[
f(z) \geq \min\{f(-\lambda), f(1 - \lambda)\} = 0.
\]

Thus, \(c^z \leq c^{-\lambda}(1 + \lambda(c - 1)) + z(c^{1-\lambda} - c^{-\lambda}) \), so that

\[
c^z \leq c^{-\lambda}e^{\lambda(c-1)} + z(c^{1-\lambda} - c^{-\lambda}).
\]

(b)

\[
\Pr(X \geq cE[X]) = \Pr\left(\sum_i X_i \geq cE[X] \right)
\]

\[
= \Pr\left(\sum_i (\Delta_i + E[X_i]) \geq cE[X] \right)
\]

\[
= \Pr(\Delta + E[X] \geq cE[X])
\]

\[
= \Pr(\Delta \geq (c - 1)E[X])
\]

\[
= \Pr(c\Delta \geq c^{(c-1)E[X]})
\]

\[
\leq \frac{E[c\Delta]}{c^{(c-1)E[X]}}.
\]

(c) By setting \(\lambda = E[X_i], \)

\[
E[e^{c\Delta_i}] \leq E[e^{-\lambda}e^{\lambda(c-1)} + \Delta_i(c^{1-\lambda} - c^{-\lambda})]
\]

\[
= E[e^{-\lambda}e^{\lambda(c-1)}] \quad \text{(since } E[\Delta_i] = E[X_i] - E[X_i] = 0) \\
= e^{-\lambda}e^{\lambda(c-1)} \quad \text{(since } \lambda = E[X_i] \text{ is a constant)}
\]

\[
= e^{\lambda(c-1-\ln c)}.
\]

(d) Since \(\Delta_1, \Delta_2, \ldots, \Delta_n \) are independent, we have:

\[
E[c\Delta] = \prod E[e^{\Delta_i}] \leq \prod e^{E[X_i](c-1-\ln c)} = e^{E[X](c-1-\ln c)}.
\]
Combining this with part (b), we have:

$$\Pr(X \geq c E[X]) \leq \frac{e^{E[X](c-1-\ln c)}}{c^{(c-1)E[X]}}$$

$$= \frac{e^{E[X](c-1-\ln c)}}{e^{(c \ln c - \ln c)E[X]}}$$

$$= e^{E[X](c-1-\ln c-c \ln c+\ln c)}$$

$$= e^{-\alpha E[X]},$$

where $\alpha = c \ln c + 1 - c$.