1. (10%) A fixed point of a permutation $\pi : [1, n] \rightarrow [1, n]$ is a value for which $\pi(x) = x$. Find the variance in the number of fixed points of a permutation chosen uniformly at random from all permutations.

Hint: Let X_i be an indicator such that $X_i = 1$ if $\pi(i) = i$. Then, $\sum_{i=1}^{n} X_i$ is the number of fixed points. You cannot use linearity to find $\text{Var}[\sum_{i=1}^{n} X_i]$, but you can calculate it directly.

2. (20%) The weak law of large numbers state that, if X_1, X_2, X_3, \ldots are independent and identically distributed random variables with finite mean μ and finite standard deviation σ, then for any constant $\epsilon > 0$ we have

$$\lim_{n \to \infty} \Pr\left(\left| \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n} - \mu \right| > \epsilon \right) = 0$$

Use Chebyshev's inequality to prove the weak law of large numbers.

3. (20%) Suppose you are given a biased coin that has $\Pr(\text{head}) = p$. Also, suppose that we know $p \geq a$, for some fixed a. Now, consider flipping the coin n times and let n_H be the number of times a head comes up. Naturally, we would estimate p by the value $\tilde{p} = n_H/n$.

(a) Show that for any $\epsilon \in (0, 1),$

$$\Pr(|p - \tilde{p}| > \epsilon p) < \exp\left(\frac{-n a \epsilon^2}{2}\right) + \exp\left(\frac{-n a \epsilon^2}{3}\right)$$

(b) Show that for any $\delta \in (0, 1)$, if

$$n > \frac{2 \ln(2/\delta)}{a \epsilon^2},$$

then

$$\Pr(|p - \tilde{p}| > \epsilon p) < \delta.$$

4. (20%) Let X_1, X_2, \ldots, X_n be independent Poisson trials such that $\Pr(X_i) = p_i$. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = E[X]$. During the class, we have learnt that for any $\delta > 0,$

$$\Pr(X \geq (1 + \delta)\mu) < \left(\frac{e^\delta}{(1 + \delta)^{(1+\delta)}} \right)^\mu$$

In fact, the above inequality holds for the weighted sum of Poisson trials. Precisely, let a_1, \ldots, a_n be real numbers in $[0, 1]$. Let $W = \sum_{i=1}^{n} a_i X_i$ and $\nu = E[W]$. Then, for any $\delta > 0,$

$$\Pr(W \geq (1 + \delta)\nu) < \left(\frac{e^\delta}{(1 + \delta)^{(1+\delta)}} \right)^\nu$$
(a) Show that the above bound is correct.
(b) Prove a similar bound for the probability \(\Pr(W \leq (1 - \delta)\nu) \) for any \(0 < \delta < 1 \).

5. (30%) Consider a collection \(X_1, X_2, \ldots, X_n \) of \(n \) independent geometric random variables with parameter \(1/2 \). Let \(X = \sum_{i=1}^{n} X_i \) and \(0 < \delta < 1 \).

(a) By applying Chernoff bound to a sequence of \((1 + \delta)(2n) \) fair coin tosses,\(^\dagger\) show that
\[
\Pr(X > (1 + \delta)(2n)) < \exp\left(\frac{-n\delta^2}{2(1 + \delta)}\right).
\]

(b) Derive a Chernoff bound on \(\Pr(X > (1+\delta)(2n)) \) using the moment generating function for geometric random variables as follows:

(i) Show that
\[
\mathbb{E}[e^{tX}] = \frac{e^t}{2 - e^t}.
\]

(ii) Show that
\[
\left|\frac{1}{(2 - e^t)e^{t(1+2\delta)}}\right|
\]

is minimized when \(t = \ln(1 + \delta/(1 + \delta)) \).

(iii) Show that
\[
\Pr(X > (1 + \delta)(2n)) < \left(\left(1 - \frac{\delta}{1 + \delta}\right)\left(1 + \frac{\delta}{1 + \delta}\right)^{1+2\delta}\right)^{-n}.
\]

(c) It is known that when \(\delta \) is small, there exists \(\varepsilon > 0 \) such that
\[
1 - \frac{\delta}{1 + \delta} > e^{-\varepsilon}, \quad \left(1 + \frac{\delta}{1 + \delta}\right)^{(1+\delta)/\delta} > e^{1-\varepsilon}, \quad \text{and} \quad \frac{(1 + 2\delta)\delta}{1 + \delta} > \delta^2.
\]

Show that in this case, the bound in 5(b)-(iii) becomes
\[
\Pr(X > (1 + \delta)(2n)) < \exp\left(-n(1 - \varepsilon)\delta^2 - \varepsilon\right).
\]

Conclude that when \(\delta \) is small enough such that \(\varepsilon \) is arbitrarily close to 0, the above bound is tighter than the bound obtained in 5(a).

\(^\dagger\)Here, we just assume \((1 + \delta)(2n) \) is an integer.