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Assignment 3 - problem 1

I We prove that if Z is a Poisson random variable of mean µ,
where µ ≥ 1 is an integer, then Pr(Z ≥ µ) ≥ 1/2.

1. Show that Pr(Z = µ + h) ≥ Pr(Z = µ− h − 1) for
0 ≤ h ≤ µ− 1.
Ans. For any non-negative integer k,
Pr(Z = k) = e−µµk/k! by definition. So,

Pr(Z = µ + h)

Pr(Z = µ− h − 1)
=

µ2h+1

(µ− h)(µ− (h − 1)) · · · (µ + h)

=
µ2

µ2 − h2
· µ2

µ2 − (h − 1)2
· · · µ2

µ2 − 12
· µ

µ

≥ 1.

In other words, Pr(Z = µ + h) ≥ Pr(Z = µ− h − 1).
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Assignment 3 - problem 1 (con’t)

I Using part (a), argue that Pr(Z ≥ µ) ≥ 1/2.
Ans.

1 =
∞∑

k=1

Pr(Z = k) =

µ−1∑

k=0

Pr(Z = k) + Pr(Z ≥ µ).

Then by part (a), we know that

µ−1∑

k=0

Pr(Z = k) ≤
2µ−1∑

k=µ

Pr(Z = k) ≤
∞∑

k=µ

Pr(Z = k) = Pr(Z ≥ µ).

Combining, we have

1 =
∞∑

k=0

Pr(Z = k) =

µ−1∑

k=0

Pr(Z = k)+Pr(Z ≥ µ) ≤ 2 Pr(Z ≥ µ).

Thus, Pr(Z ≥ µ) ≥ 1/2.
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Assignment 3 - problem 2

I In Page 15 of Lecture Notes 14, we showed that for any
nonnegatvie function f ,

E
[
f (Y

(m)
1 , · · · ,Y

(m)
n )

]
≥ E

[
f (X

(m)
1 , · · · , X

(m)
n )

]
Pr

(∑
Y

(m)
i = m

)
.

1. Now, suppose we further know that E
[
f (X

(m)
1 , · · · , X

(m)
n )

]
is

monotonically increasing in m. Show that

E
[
f (Y

(m)
1 , · · · , Y (m)

n )
]
≥ E

[
f (X

(m)
1 , · · · , X (m)

n )
]
Pr

(∑
Y

(m)
i ≥ m

)
.
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Assignment 3 - problem 2 (con’t)

I Proof.

E
[
f (Y

(m)
1 , · · · ,Y

(m)
n )

]

=
∑

k≥0

E
[
f (Y

(m)
1 , · · · , Y

(m)
n ) |

∑
Y

(m)
i = k

]
Pr

(∑
Y

(m)
i = k

)

≥
∑

k≥m

E
[
f (Y

(m)
1 , · · · , Y

(m)
n ) |

∑
Y

(m)
i = k

]
Pr

(∑
Y

(m)
i = k

)

=
∑

k≥m

E
[
f (X

(k)
1 , · · · ,X

(k)
n )

]
Pr

(∑
Y

(m)
i = k

)

≥
∑

k≥m

E
[
f (X

(m)
1 , · · · ,X

(m)
n )

]
Pr

(∑
Y

(m)
i = k

)

monotonically increasing.

= E
[
f (X

(m)
1 , · · · , X

(m)
n )

]
Pr

(∑
Y

(m)
i ≥ m

)
,
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Assignment 3 - problem 2 (con’t)

I Combining part (a) with the results in Question 1, prove the
monotonically increasing case of theorem in Page 20 of
Lecture Notes 14.
Proof. Let Z =

∑
Y

(m)
i . Since each Y

(m)
i is a Poisson

random variable, their sum Z is also a Poisson random
variable. Further, the mean value of Z is m. Thus, by results
in Question 1, Pr(Z ≥ m) ≥ 1/2. Combining this with part
(a), we have

E
[
f (X

(m)
1 , · · · ,X

(m)
n )

]
≤ 2 E

[
f (Y

(m)
1 , · · · , Y

(m)
n )

]

when E
[
f (X

(m)
1 , · · · ,X

(m)
n )

]
is monotonically increasing in

m. This completes the proof of the monotonically increasing
case of the desired theorem.
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Assignment 3 - problem 3

I Bloom filters can be used to estimate set differences. Suppose
you have a set X and I have a set Y , both with n elements.
For example, the sets might represent our 100 favorite songs.
We both create Bloom filters of our sets, using the same
number of bits m and the same k hash functions. Determine
the expected number of bits where our Bloom filters differ as
a function of m, n, k, and |X ∩ Y |.
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Assignment 3 - problem 3 (con’t)

I Ans. Let Z be a random variable denoting the number of bits
where the Bloom filters differ. Let Zi be an indicator such that

Zi = 1 if the ith bit of the Bloom filters differ
Zi = 0 otherwise.

Thus, Z = Z1 + Z2 + · · ·+ Zm
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Assignment 3 - problem 3 (con’t)

I When |X ∩ Y | = r , Zi = 1 only happens when each of the r
common elements are not mapped to the ith bit, together
with exactly one of the following cases (that causes the ith bit
different):

1. Some elements of X − (X ∩ Y ) is mapped to the ith bit, but
all elements of Y − (X ∩ Y ) are not;

2. Some elements of Y − (X ∩ Y ) is mapped to the ith bit, but
all elements of X − (X ∩ Y ) are not.
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Assignment 3 - problem 3 (con’t)

I Let Qi denote the event that the r common elements are not
mapped to the ith bit. By assuming that the hash functions
we choose will map elements independently and uniformly at
random to one of the m bits, we have

Pr(Zi = 1) = Pr(Qi ∩ (Case (a) or Case (b)))

= Pr(Qi ) (Pr(Case (a)) + Pr(Case (b)))

=

(
1− 1

m

)rk

(Pr(Case (a)) + Pr(Case (b)))
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Assignment 3 - problem 3 (con’t)

I

=

(
1− 1

m

)rk

× 2×
(

1−
(

1− 1

m

)(n−r)k
)

︸ ︷︷ ︸
some elements mapped to ith bit

×
((

1− 1

m

)(n−r)k
)

︸ ︷︷ ︸
no elements mapped to ith bit

= 2

(
1− 1

m

)nk
(

1−
(

1− 1

m

)(n−r)k
)

.
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Assignment 3 - problem 3 (con’t)

I As Zi is an indicator, E [Zi ] = Pr(Zi = 1). Thus,

E [Z ] =
m−1∑

i=0

E [Zi ] = m ∗ E [Zi ]

= 2m

(
1− 1

m

)nk
(

1−
(

1− 1

m

)(n−r)k
)

.

Slippers Tutorial IV



Assignment 3 - problem 4

I For the leader election problem briefly introduced in Lecture
Notes 15, we have n users, each with an identifier. Suppose
that we have a good hash function (that looks uniform and
independent), which outputs a b-bit hash value for each
identifier. One way to solve the leader election problem is as
follows: Each user obtains the hash value from its identifier,
and the leader is the user with the smallest hash value.
Give lower and upper bounds on the number of bits b
necessary to ensure that a unique leader is successfully chosen
with probability p. Make your bounds as tight as possible.
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Assignment 3 - problem 4 (con’t)

I Ans. (Lower Bound:) First, a unique leader is determined if
and only if for some identifier i , it is mapped exactly by one
user, while all other users are mapped to the identifiers larger
than i . This implies that:

p =
2b−2∑

i=0

Pr(“identifier i is mapped exactly by one user”

∩“all other users are larger than i”)

=
2b−2∑

i=0

1

2b
·
(

1− i + 1

2b

)n−1

(1)

≤
2b−2∑

i=0

1

2b
·
(

1− 1

2b

)n−1

≤
(

1− 1

2b

)n−1

.
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Assignment 3 - problem 4 (con’t)

I By re-arranging terms, we have:

b ≥ log2

(
1

1− p
1

n−1

)
.
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Assignment 3 - problem 4 (con’t)

I (Upper Bound:) Next, p is greater than the probability that
user 1 is the unique leader. This happens when user 1 is
mapped to uniquely to some number, and this number is
smallest among all numbers mapped by other users. Thus,

p ≥ Pr(“user 1 is mapped uniquely” ∩ “this number is smallest”)

= Pr(“this number is smallest” | “user 1 is mapped uniquely”)

× Pr(“user 1 is mapped uniquely”)

= Pr(“this number is smallest” | “user 1 is mapped uniquely”)

(
1− 1

2b

)n−1

≥ 1

n

(
1− 1

2b

)n−1

.

By re-arranging terms, we have:

b ≤ log2

(
1

1− (np)
1

n−1

)
.
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Assignment 3 - problem 4 (con’t)

I In conclusion,

log2

(
1

1− p
1

n−1

)
≤ b ≤ log2

(
1

1− (np)
1

n−1

)
.
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Assignment 4 - problem 1

I Consider an instance of SAT with m clauses, where every
clause has exactly k literals.

1. Give a Las Vegas algorithm that finds an assignment satisfying
at least m(1− 2−k) clauses, and analyze its expected running
time.

2. Give a derandomization of the randomized algorithm using the
method of conditional expectations.
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Assignment 4 - problem 2

I 1. Prove that, for every integer n, there exists a coloring of the
edges of the complete graph Kn by two colors so that the total
number of monochromatic copies of K4 is at most

(
n
4

)
2−5.

2. Give a randomized algorithm for finding a coloring with at
most

(
n
4

)
2−5 monochromatic copies of K4 that runs in

expected time polynomial in n.
3. Show how to construct such a coloring deterministically in

polynomial time using the method of conditional expectations.
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Assignment 4 - problem 2 (con’t)

I hint:

1. The expectation of the total number of monochromatic copies
of K4.

2. Las Vegas algorithm
3. You can compare the expectation numbers of monochromatic

copies of K4 when a edge is assigned to different color.
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Assignment 4 - problem 3

I Given an n-vertex undirected graph G = (V , E ), consider the
following method of generating an independent set. Given a
permutation σ of the vertices, define a subset S(σ) of the
vertices as follows: for each vertex i , i ∈ S(σ) if and only if no
neighbor j of i precedes i in the permutation σ.

1. Show that each S(σ) is an independent set in G .
2. Suggest a natural randomized algorithm to produce σ for

which you can show that the expected cardinality of S(σ) is

n∑

i=1

1

di + 1

where di denotes the degree of vertex i .
3. Prove that G has an independent set of size at least∑n

i=1 1/(di + 1).
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Assignment 4 - problem 3 (con’t)

I Choose a random permutation σ from Sn, the set of all n!
permutations of V.

I A vertex i is good if σ(i) < σ(j) for every j adjacent to i .

I Let S(σ) be the collection of good vertices and output S(σ).
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Assignment 4 - problem 3 (con’t)

I hint:

1. You can think about the definition of ”good vertices”, and
proof it by contradiction.

2. The expected cardinality of S(σ) is equal to the expected
number of good vertices in G.

Slippers Tutorial IV



Assignment 4 - problem 4

I We have shown using the probabilistic method that, if a graph
G has n nodes and m edges, then there exists a partition of
the n nodes into sets A and B such that at least m/2 edges
cross the partition. Improve this result slightly: show that
there exists a partition such that at least mn/(2n − 1) edges
cross the partition.
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Assignment 4 - problem 4 (con’t)

I hint:

1. You can fix a point and find the probability of the crossing
edge.

2. You can discuss from two cases.
(a) n is odd.
(b) n is even.
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Assignment 4 - problem 5

I Use the general form of the Lovasz local lemma to prove that
the symmetric version of Theorem 6.11 can be improved by
replacing the condition 4dp ≤ 1 by the weaker condition
ep(d + 1) ≤ 1.
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Assignment 4 - problem 5 (con’t)

I hint:

1. Set xi = 1/(d + 1) to the general case Lovasz local lemma.
2. You have already had Pr(Ei ) ≤ p from the symmetric version

of Lovasz local lemma and you want to prove
Pr(Ei ) ≤ xi

∏
(i,j)∈E (1 = xj).
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