CS5314 RANDOMIZED ALGORITHMS

Homework 2 Due: 3:20 pm, May 3, 2007 (before class)

1. A fixed point of a permutation $\pi:[1,n]\to[1,n]$ is a value for which $\pi(x)=x$. Find the variance in the number of fixed points of a permutation chosen uniformly at random from all permutations.

Hint: Let X_i be an indicator such that $X_i = 1$ if $\pi(i) = i$. Then, $\sum_{i=1}^n X_i$ is the number of fixed points. You cannot use linearity to find $\mathbf{Var}[\sum_{i=1}^n X_i]$, but you can calculate it directly.

- 2. Generalize the median-finding algorithm to find the kth largest item in a set of n items for any given value of k. Prove that your resulting algorithm is correct, and bound its running time.
- 3. The weak law of large numbers state that, if X_1, X_2, X_3, \ldots are independent and identically distributed random variables with finite mean μ and finite standard deviation σ , then for any constant $\varepsilon > 0$ we have

$$\lim_{n \to \infty} \Pr\left(\left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| > \varepsilon \right) = 0.$$

Use Chebyshev's inequality to prove the weak law of large numbers.

- 4. Consider a collection X_1, \ldots, X_n of n independent integers chosen uniformly at random from the set $\{0,1,2\}$. Let $X = \sum_{i=1}^n X_i$ and $0 < \delta < 1$. Derive a Chernoff bound for $\Pr(X \ge (1+\delta)n)$ and $\Pr(X \le (1-\delta)n)$.
- 5. Let X_1, X_2, \ldots, X_n be independent Poisson trials such that $\Pr(X_i) = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$. During the class, we have learnt that for any $\delta > 0$,

$$\Pr(X \ge (1+\delta)\mu) < \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

In fact, the above inequality holds for the *weighted* sum of Poisson trials. Precisely, let a_1, \ldots, a_n be real numbers in [0, 1]. Let $W = \sum_{i=1}^n a_i X_i$ and $\nu = E[W]$. Then, for any $\delta > 0$,

$$\Pr(W \ge (1+\delta)\nu) < \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\nu}.$$

- (a) Show that the above bound is correct.
- (b) Prove a similar bound for the probability $\Pr(W \leq (1 \delta)\nu)$ for any $0 < \delta < 1$.
- 6. Let X_1, \ldots, X_n be independent random variables such that

$$\Pr(X_i = 1 - p_i) = p_i$$
 and $\Pr(X_i = -p_i) = 1 - p_i$.

Let
$$X = \sum_{i=1}^{n} X_i$$
. Prove

$$\Pr(|X| \ge a) \le 2e^{-2a^2/n}.$$

1

Hint: You may assume the inequality (no need to prove)

$$p_i e^{\lambda(1-p_i)} + (1-p_i)e^{-\lambda p_i} \le e^{\lambda^2/8}.$$

This inequality is difficult to prove directly.¹

7. (Further studies: No marks) Previously, we have shown the expected time for the Randomized Quicksort to sort n numbers is $O(n \log n)$. Here, we want to prove further that the algorithm runs in $O(n \log n)$ time with high probability. Consider the following view of Randomized Quicksort. Every point in the algorithm where it decides on a pivot element is called a *node*. Suppose the size of the set to be sorted at a particular node is s. The node is called *good* if the pivot element divides the set into two parts, each of size not exceeding 2s/3. Otherwise, the node is called *bad*.

The nodes can be thought of as forming a tree in which the root node has the whole set to be sorted and its children have the two sets formed after the first pivot step and so on.

- (a) Show that the number of good nodes in any path from the root to a leaf in this tree is not greater than $c \log_2 n$, where c is some positive constant.
- (b) Show that, with high probability (greater than $1 1/n^2$), the number of nodes in a given root to a leaf path of the tree is not greater than $c' \log_2 n$, where c' is another constant. (*Hint*: If c' is much larger than c, there must be many bad nodes on the path... Will that be likely to occur?)
- (c) Show that, with high probability (greater than 1 1/n), the number of nodes in the longest root to leaf path is not greater than $c' \log_2 n$. (Hint: How many nodes are there in the tree?)
- (d) Use your answers to show that the running time of Randomized Quicksort is $O(n \log n)$ with probability at least 1 1/n.

¹I do not know how to prove this either. If somehow you know how to prove it, please let us know!