
A Space and Time Efficient Algorithm for Constructing

Compressed Suffix Arrays ∗

Wing-Kai Hon† Tak-Wah Lam† Kunihiko Sadakane‡

Wing-Kin Sung§ Siu-Ming Yiu†

Abstract

With the first human DNA being decoded into a sequence of about 2.8 billion charac-
ters, many biological research has been centered on analyzing this sequence. Theoretically
speaking, it is now feasible to accommodate an index for human DNA in the main mem-
ory so that any pattern can be located efficiently. This is due to the recent breakthrough
on compressed suffix arrays, which reduces the space requirement from O(n log n) bits to
O(n) bits for indexing a text of n characters. However, constructing compressed suffix
arrays is still not an easy task because we still have to compute suffix arrays first and need
a working memory of O(n log n) bits (i.e., more than 13 Gigabytes for human DNA). This
paper initiates the study of constructing compressed suffix arrays directly from the text.
The main contribution is a construction algorithm that uses only O(n) bits of working
memory, and the time complexity is O(n log n). Our construction algorithm is also time
and space efficient for texts with large alphabets such as Chinese or Japanese. Precisely,
when the alphabet size is |Σ|, the working space becomes O(n(H0 + 1)) bits, where H0

denotes the order-0 entropy of the text and it is at most log |Σ|; for the time complexity,
it remains O(n log n) which is independent of |Σ|.

1 Introduction

DNA sequences, which hold the code of life for living organisms, can be represented by strings
over four characters A, C, G, and T. With the advance in bio-technology, the complete DNA
sequences for a number of living organisms have been known. Even for human DNA, a draft
which comprises about 2.8 billion characters, has been finished recently. This paper is concerned
with data structures for indexing a DNA sequence so that searching for an arbitrary pattern
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can be performed efficiently. Such tools find applications to many biological research activities
on DNA, such as gene hunting, promoter consensus identification, and motif finding. Unlike
English text, DNA sequences do not have word boundaries; suffix trees [18] and suffix arrays
[16] are the most appropriate solutions in the literature for indexing DNA. For a DNA sequence
with n characters, building a suffix tree takes O(n) time, then a pattern P can be located
in O(|P | + occ) time, where occ is the number of occurrences. For suffix arrays, construction
and searching takes O(n) time and O(|P | logn + occ) time, respectively. Both data structures
require O(n log n) bits; suffix array is associated with a smaller constant, though. For human
DNA, the best known implementation of suffix tree and suffix array require 40 Gigabytes and
13 Gigabytes, respectively [13]. Such memory requirement far exceeds the capacity of ordinary
computers. Existing approaches for indexing human DNA include (1) using supercomputers
with large main memory [22]; and (2) storing the indexing data structure in the secondary
storage [2, 11]. The first approach is expensive and inflexible, while the second one is slow. As
more and more DNA are decoded, it is vital that individual biologists can eventually analyze
different DNA sequences efficiently with their PCs.

Recent breakthrough results in compressed suffix arrays, namely, the Compressed Suffix
Arrays (CSA) proposed by Grossi and Vitter [7], and the FM-index proposed by Ferragina and
Manzini [3], shed light on this direction. It is now feasible to store a compressed suffix array
of human DNA in the main memory, which occupies only O(n) bits.1 Pattern search can still
be performed efficiently, the time complexity increases only by a factor of log n. For human
DNA, a compressed suffix array occupies about 2 Gigabytes. Nowadays a PC can have up
to 4 Gigabytes of main memory and can easily accommodate such a data structure. For the
performance of CSA and FM-index in practice, one can refer to [4, 6, 9].

Theoretically speaking, a compressed suffix array can be constructed using O(n) time; how-
ever, the construction process requires much more than O(n) bits of working memory. Among
others, the original suffix array has to be built first, taking up at least n log n bits. In the con-
text of human DNA, the working memory for constructing a compressed suffix array is at least
40 Gigabytes [22], far exceeding the capacity of ordinary PCs. This motivates us to investigate
whether we can construct a compressed suffix array using O(n) bits of memory, perhaps with
a slight increase in construction time. The space requirement means construction directly from
DNA sequences. This paper provides the first algorithm of such a kind, showing that the basic
form of the CSA—the Ψ array—can be built in a space and time efficient manner, which can
then be easily converted to the FM-index. In addition, our construction algorithm can be used
to construct the hierarchical CSA [7].

Our construction algorithm for the Ψ array also works well for texts without word boundary,
such as Chinese or Japanese, whose alphabet consists of at least a few thousand characters.
Precisely, for a text with an alphabet Σ, our algorithm requires O(n(H0 + 1)) bits of working
memory, where H0 denotes the order-0 entropy of the text and it is at most log |Σ|. The time
complexity is O(n log n), which is independent of |Σ|.

Experiments show that for human DNA, our space-efficient algorithm for the Ψ array can
run on a PC with 3 Gigabytes of memory and takes about 21 hours [9], which is only about three
times slower than the original algorithm implemented on a supercomputer with 64 Gigabytes
of main memory to accommodate the suffix array [22].

1In general, for a text over an alphabet Σ, CSA occupies nHk + o(n) bits [7, 5] and FM-index requires
O(nHk) + o(n) bits [3], where Hk denotes the k-th entropy of the text and Hk is upper bounded by log |Σ|.
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Remark: More recently, Hon et al. [10] have derived an alternative algorithm for constructing
the Ψ array, which runs in O(n log log |Σ|) time; however, the space requirement is O(n log |Σ|),
which is not preferred for texts with a large alphabet but with small entropy such as XML
documents.

Technically speaking, our algorithm does not require much space other than that for storing
the Ψ array. This is based on an observation that the Ψ arrays of two consecutive suffixes are
very similar. Thus, we can build the entire Ψ array directly from the text in an incremental
‘character by character’ manner. Exploiting this observation further, we can speed up the con-
struction by processing more characters each time, yielding a ‘segment by segment’ algorithm.

The rest of this paper is organized as follows. Section 2 reviews the suffix arrays and the Ψ
array. Section 3 relates the Ψ arrays between two consecutive suffixes, thereby giving a taste of
constructing the Ψ array in a ‘character by character’ manner. Section 4 details the ‘segment
by segment’ construction algorithm for the Ψ array, while Section 5 discusses the construction
of the hierarchical CSA and the conversion of Ψ into the FM-index in a space-efficient manner.

2 Preliminaries

In this section, we review the definitions of suffix arrays and the basic form of the Compressed
Suffix Arrays (CSA), which is called the Ψ array. Also, we introduce some notations to be used
throughout the paper. In addition, some simple observations on the Ψ array are presented.

Let T be a text over an alphabet Σ. Throughout this paper, we assume that T is given
a special character $ at the end, where $ is not in Σ and is lexicographically smaller than all
characters in Σ. Let n be the number of characters (including $) in T . T is assumed to be
stored in an array T [0..n− 1]. For any integer i ∈ [0, n− 1], we denote

• T [i] as the (i + 1)-th character of T from the left (thus, T [n− 1] = $); and

• Ti as the suffix of T starting from the position i; that is, Ti = T [i..n − 1] = T [i]T [i +
1] . . . T [n− 1].

Furthermore, let S(T ) denote the set of all suffixes of T , {T0, T1, · · · , Tn−1}.

i T [i] Ti

0 a acaaccg$
1 c caaccg$
2 a aaccg$
3 a accg$
4 c ccg$
5 c cg$
6 g g$
7 $ $

i SA[i] TSA[i]

0 7 $
1 2 aaccg$
2 0 acaaccg$
3 3 accg$
4 1 caaccg$
5 4 ccg$
6 5 cg$
7 6 g$

i Ψ[i] T [SA[i]]

0 2 $
1 3 a

2 4 a

3 5 a

4 1 c

5 6 c

6 7 c

7 0 g

Figure 1: The suffix array and the Ψ array of acaaccg$

Suffix Arrays: A suffix array [16] of T , denoted SA[0..n − 1], is a sorted sequence of the
suffixes of T . Formally, SA[i] denotes the starting position of the (i + 1)-th smallest suffix of
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T . In other words, according to the lexicographical order, TSA[0] < TSA[1] < . . . < TSA[n−1]. See
Figure 1 for an example. Note that SA[0] = n − 1. Each SA[i] can be represented in dlog ne
bits, and the suffix array can be stored using ndlog ne bits.2 Given a text T together with the
suffix array SA[0..n− 1], the occurrences of any pattern P in T can be found without scanning
T again. Precisely, it takes O(|P | logn+occ) time, where occ is the number of occurrences [16].

For every integer i ∈ [0, n − 1], define SA−1[i] to be the integer j such that SA[j] = i.
Intuitively, SA−1[i] denotes the rank of Ti among the suffixes of T , which is the number of
suffixes of T lexicographically smaller than Ti. We use the notation Rank(X,S) to denote the
rank of X among a set of strings S. Thus, SA−1[i] = Rank(Ti,S(T )).

The Basic Form of the CSA: Based on SA and SA−1, the basic form of the CSA of a text
T is an array Ψ[0..n − 1] defined as follows [7]: Ψ[i] = SA−1[SA[i] + 1] for i = 1, 2, . . . , n − 1,
whereas Ψ[0] is defined as SA−1[0]. In other words, if Tk is the suffix with rank i, Ψ[i] is the
rank of the suffix Tk+1. See Figure 1 for an example. It is worth-mentioning that Ψ can be
used to recover SA−1 iteratively: SA−1[1] = Ψ[Ψ[0]], SA−1[2] = Ψ[Ψ[Ψ[0]]], ..., etc.

Note that Ψ[0..n− 1] contains n integers. A trivial way to store the array requires ndlog ne
bits, using the same space as SA. Nevertheless, Ψ[1..n− 1] can be decomposed into |Σ| strictly
increasing sequences, which allows it to be stored succinctly. See Figure 1 for an illustration.
This increasing property is based on the following lemmas.

Lemma 1 For every i < j, if T [SA[i]] = T [SA[j]], then Ψ[i] < Ψ[j].

Proof: Note that i < j if and only if TSA[i] < TSA[j]. This implies that if i < j and T [SA[i]] =
T [SA[j]], TSA[i]+1 < TSA[j]+1. Equivalently, we have TSA[Ψ[i]] < TSA[Ψ[j]]. Thus, Ψ[i] < Ψ[j] and
the lemma follows. �

For each character c, let α(c) be the number of suffixes starting with a character lexico-
graphically smaller than c, and let #(c) be the number of suffixes starting with c.

Corollary 1 For each character c, Ψ[α(c)..α(c)+#(c)−1] gives a strictly increasing sequence.

Proof: For any character c, T [SA[α(c)]] = T [SA[α(c)+1]] = · · · = T [SA[α(c)+#(c)−1]] = c.
By Lemma 1, Ψ is strictly increasing in Ψ[α(c)..α(c) + #(c)− 1]. �

Based on the above increasing property, Grossi and Vitter [8] devised a scheme to store
Ψ of a binary text in O(n) bits. In fact, this scheme can be easily extended for storing Ψ
of a general text, taking O(n(H0 + 1)) bits, where H0 ≤ log |Σ| is the order-0 entropy of the
text T . Details are as follows. For each character c, the sequence Ψ[α(c)..α(c) + #(c) − 1]
is represented using Rice code [20]. That is, each Ψ[i] in the sequence is divided into two
parts qi and ri, where qi is the first (or most significant) blog #(c)c bits, and ri is the remaining
dlog ne−blog #(c)c bits, which is at most dlog(n/#(c))e+1 bits. The ri’s are stored explicitly in
an array of size #(c)(dlog(n/#(c))e+1) bits. For the qi’s, since they form a monotonic increasing
sequence bounded by 0 and #(c)− 1, we store qα(c), and the difference values qi+1 − qi for i ∈
[α(c), α(c)+#(c)−2] using unary codes,3 which requires 2#(c) bits. In total, the space required

2Throughout this paper, we assume that the base of the logarithm is 2.
3The unary code for an integer x ≥ 0 is encoded as x 0’s followed by a 1.
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is at most
∑

c∈Σ #(c)(dlog(n/#(c))e+3). By definition, nH0 is equal to
∑

c∈Σ #(c) log(n/#(c)),
the total space is thus at most (H0 + 4)n bits.

Based on the above discussion, we have the following lemma.

Lemma 2 The Ψ array can be represented using O(n(H0 + 1)) bits. If we can enumerate
the values of Ψ[i] sequentially, this representation can be constructed directly using O(n) time
without extra working space.

With the above representation scheme, each Ψ value can be retrieved in O(1) time by using
the following auxiliary data structures. They include: (1) Raman et al.’s dictionary (Lemma 2.3
in [19]) on the values of α(c) for all c in Σ, which supports for each c finding α(c) in O(1) time,
and supports for each i finding the largest c with α(c) ≤ i in O(1) time; (2) the unary encoded
qi’s for c = 1, 2, . . . , |Σ| are stored consecutively as a bit-vector B of at most 2n bits, and we
create Jacobson’s data structure [12] on B to support O(1)-time rank and select queries; (3)
Raman et al.’s dictionary on the pointers to the arrays of ri’s, which supports for each c an
O(1)-time retrieval of the corresponding pointer.

To find Ψ[i], we compute the largest c such that α(c) ≤ i. Then, we know that Ψ[i] is
within the strictly increasing sequence of Ψ[α(c)..α(c)+ #(c)− 1]. Next, qi can be obtained by
counting the number of 0’s between the α(c)-th 1 and the (i + 1)-th 1 in B. To obtain ri, we
compute #(c) = α(c + 1)− α(c), following the pointers for the array of ri’s for c, and retrieve
the (i − α(c) + 1)-th entry in the array (knowing that each entry occupies dlog(n/#(c))e + 1
bits). Each of the above step can be computed in O(1) time, so that the time follows.

For the space complexity, the Raman et al.’s dictionaries for α(c) values and the pointers
take log

(

n+|Σ|
|Σ|

)

+ o(n) bits and log
(

n(H0+4)+|Σ|
|Σ|

)

+ o(n(H0 + 1)) bits, respectively, while the

Jacobson’s data structure has size o(n) bits. Thus, the auxiliary structures have a total size of
O(n(H0 + 1)) bits. This gives the following lemma.

Lemma 3 The representation of Ψ in Lemma 1 can be augmented with auxiliary data structures
of total size O(n(H0 + 1)) bits, so that any Ψ value can be retrieved in O(1) time.

In the literature, there is another representation of the Ψ array which, instead of viewing Ψ
as a set of |Σ| increasing sequences, considers the Ψ array as |Σ|k sets of |Σ| increasing sequences
and encode each set of increasing sequence independently using Rice code. The resulting data
structure requires only O(n(Hk + 1)) bits for storage when k + 1 ≤ log|Σ| n, while supporting
O(1)-time retrieval of any Ψ value [5]. Nevertheless in the remaining paper, we shall assume
the above O(n(H0 + 1))-bit scheme for storing Ψ; that is, using the scheme of Lemma 2 for
representing the Ψ array, and augmenting it with the auxiliary data structures of Lemma 3.

3 The Ψ Arrays of Two Consecutive Suffixes

This section serves as a warm up to the main algorithm presented in the next section. In
particular, we investigate the relationship between the Ψ arrays of two consecutive suffixes.
Then, based on this relationship, we demonstrate an algorithm that constructs the Ψ array for
a text T , in an incremental manner. Since this algorithm is not the main result of this paper,
we only give the high-level description. One can refer to [14] for the implementation details.
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Let T be a string with n characters. We assume that T is represented by an array T [0..n−1]
and T [n− 1] = $. Let SAT and ΨT be the suffix array and Ψ array of T , respectively.

Suppose that we are given the Ψ array of T , and we want to construct the Ψ array for a
longer text T ′ = cT , where c is a character. Let SAT ′ and ΨT ′[0..n] denote the suffix array and
the Ψ array of T ′, respectively. To see the relationship between the Ψ arrays of T and T ′, we
first show that the suffix array of T ′ can be easily obtained from that of T .

Recall that SAT is a sequence of the starting positions of the suffixes of T , sorted according
to their ranks. Except T ′ itself, T ′ shares all its suffixes with T ; thus, SAT ′ has exactly one more
entry than SAT , which is due to the suffix T ′. Intuitively, to obtain SAT ′, we can insert the suffix
T ′ (which is represented by the starting position 0) into SAT . of T . Let x = Rank(T ′,S(T )).
T ′ should be inserted between SAT [x − 1] and SAT [x]. Also, since a character is added to the
beginning of T , we increment every entry of SAT by 1 to reflect the change in their starting
position. Thus, we have the following lemma.

Lemma 4 Let x = Rank(T ′,S(T )). Then,

SAT ′[i] =







SAT [i] + 1 if 0 ≤ i ≤ x− 1
0 if i = x
SAT [i− 1] + 1 if i ≥ x + 1

Based on Lemma 4, we observe the relationship between the Ψ arrays of T and T ′ as follows.

Lemma 5 Let x = Rank(T ′,S(T )). Then,

• ΨT ′ [0] = x;

• for 1 ≤ i < x, ΨT ′ [i] =

{

ΨT [i] if ΨT [i] < x
ΨT [i] + 1 if ΨT [i] ≥ x

;

• for i = x, ΨT ′ [i] =

{

ΨT [0] if ΨT [0] < x
ΨT [0] + 1 if ΨT [0] ≥ x

;

• for x < i ≤ n, ΨT ′[i] =

{

ΨT [i− 1] if ΨT [i− 1] < x
ΨT [i− 1] + 1 if ΨT [i− 1] ≥ x

.

The above lemma suggests that we can compute ΨT ′ from ΨT as follows.

1. Compute x = the rank of T ′ among all suffixes of T .

2. Set ΨT ′[0] = x.

3. For 1 ≤ i ≤ n, set ΨT ′[i] =







ΨT [i] if i < x
ΨT [0] if i = x
ΨT [i− 1] if i > x

4. For each 1 ≤ i ≤ n, if ΨT ′ [i] ≥ x, increment ΨT ′[i] by 1.
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To build the Ψ array for a text T of length n starting from scratch, we can execute the above
algorithm repeatedly, constructing the Ψ arrays for the suffixes Tn−1, Tn−2, · · · , T0 incrementally.
Each such execution can be implemented in O(n) time. Thus, we can construct ΨT for T [0..n−1]
using O(n2) time. In the next section, we will present how to improve the construction time to
O(n log n). The idea is that, instead of updating the Ψ array every time a character is added,
we collectively perform the update for every ‘segment’. This gives an incremental algorithm
which processes the text in a ‘segment by segment’ manner.

4 Incremental Algorithm for Constructing the Ψ Array

In this section, we show how to compute Ψ[0..n− 1] for the text T incrementally, in a ‘segment
by segment’ manner. To do so, we first partition the text into dn/`e consecutive segments
T 1, T 2, . . . , T dn/`e, where ` = Θ(n/ log n); each segment, except the last one, contains ` char-
acters, i.e., T i refers to the string represented by T [(i − 1)`..i` − 1]. The algorithm builds the
Ψ array of T incrementally, starting with that of T dn/`e, and then constructs the Ψ array of
T dn/`e−1T dn/`e and so on. Eventually the Ψ array of T 1T 2 . . . T dn/`e = T is constructed. Below,
we show that the construction time required for each segment is O(` logn + n) = O(n) time,
and the overall time is O(n log n), which is independent of |Σ|. For the space requirement, it is
O(n(H0 + 1)) bits.

Recall from the last section that, when we construct the Ψ array character by character, the
key point is to compute the rank of the newly added suffix among the existing ones, and alter
the existing Ψ array accordingly. Indeed, when we construct the Ψ array segment by segment,
the idea is similar. To cater for a new segment, we again compute the ranks of all newly added
suffixes among the existing ones. It is obvious that these ranks represent the positions in the
suffix array where the new suffixes are to be inserted. Accordingly the existing Ψ array needs to
be expanded in order to insert the new suffixes. However, knowing such rank is not sufficient.
We also need the rank of the new suffixes among themselves. Details are as follows.

Consider any i ∈ [1, dn/`e−1]. Let B denote the string T i+1T i+2 · · ·T dn/`e. Suppose that we
have built ΨB, the Ψ array of B. Let A = T iB. Adding T i to B introduces ` new suffixes; we call
them the long suffixes of A. The set of the long suffixes are referred to as LS(A). Other suffixes
of A are also suffixes of B, we call them the short suffixes. Note that S(A) = S(B) ∪ LS(A).
To determine the rank of a long suffix x among S(A), we can compute the rank of x among
S(B) and the rank of x among LS(A), and then sum them up.

Fact 1 Let x be a a long suffix of A (i.e., x = Ak for some k ∈ [0, `−1]). Then Rank(x,S(A)) =
Rank(x,LS(A)) + Rank(x,S(B)).

Once the rank of the long suffixes among S(A) is known, we can also compute the rank of each
short suffix among S(A) by simply adjusting the rank of a short suffix among S(B) according
to distribution of the long suffixes. To speed up the computation, we exploits a data structure
that supports in O(1) time the rank and select operations.

In Sections 4.1 and 4.2, we show how to compute Rank(x,LS(A)) and Rank(x,S(B)) for
every long suffix x, respectively. In addition, we describe how to store them in a space efficient
way while allowing fast retrieval. In Section 4.3, we give the details of constructing ΨA from

7



ΨB, and show that the Ψ array of T can be constructed in O(n log n) time using O(n(H0 + 1))
bits.

Before moving to the details of the incremental construction, we give the details for building
the first Ψ array (i.e., the Ψ for T dn/`e). Note that T dn/`e contains at most ` characters and a
brute force approach for constructing Ψ does not use too much space. Precisely, this Ψ can be
obtained easily in O(` log `) time using 3`dlog ne bits of space as follows. We use three arrays
of `dlog ne bits for storing the SA, SA−1 and Ψ of T dn/`e explicitly. First, we compute the
SA for T dn/`e by suffix sorting, which takes O(` log `) time using `dlog ne bits in addition to
that for storing SA [15]. Afterwards, the SA−1 can be computed in O(`) time. When both
SA and SA−1 are available, we can construct the representation of Ψ (under the scheme of
Lemma 1) in O(`) time. For the auxiliary data structures (under the scheme of Lemma 2),
they are computed in O(` + |Σ|) time: (1) The Raman et al.’s dictionary for the α(c) values
are constructed by examining the SA array sequentially, using O(` + |Σ|) time; (2) the two
remaining data structures are computed along with the representation of Ψ, taking an extra
O(`) time.

4.1 Rank of long suffixes among themselves

This section describes how to compute the rank of the ` long suffixes of A among themselves (i.e.,
suffixes in LS(A)). A straightforward method is to sort the suffixes of A and then determine
the rank of every suffix of A among themselves. However, this requires O(n log n) time when
|A| = O(n) [15]. In fact, when given ΨB, a simple observation shows that it suffices to perform
suffix sorting on the prefix A[0..2` − 1] only, and the time is reduced to O(` log `). The idea
is as follows: If the first ` characters of two suffixes (say, Ai and Aj) in LS(A) are different,
their relative order can be decided immediately; otherwise we resolve their relative order by
comparing their suffixes starting at the (`+1)-th character, which are exactly the suffixes of B
starting at position i and j (i.e., Bi and Bj). Note that the relative order of Bi and Bj can be
deduced from ΨB. More precisely, define P and Q to be two arrays of ` integers such that for
all k ∈ [0, `− 1],

• P [k] is the rank of Ak among LS(A) when only the first ` characters are considered;

• Q[k] is the rank of Bk among S(B).

Let (p1, q1) and (p2, q2) be two tuples. We say (p1, q1) is smaller than (p2, q2) if (i) p1 < p2

or (ii) p1 = p2 and q1 < q2. For any tuple (p, q) among a set of tuples S, the rank of (p, q) is
the number of tuples in S that is smaller than (p, q). Then, we have the following fact.

Fact 2 Consider the ` tuples (P [k], Q[k]) for all k ∈ [0, ` − 1]. For any long suffix Ah,
Rank(Ah,LS(A)) is equal to the rank of (P [h], Q[h]) among these ` tuples.

Suppose that ΨB is given. Below we give the details of computing the arrays P and Q.
Then, we make use of the above fact to compute the rank of the long suffixes of A among
themselves. The results are stored in an array called M . Details are as follows:

Step 1: Computing P . To sort the ` long suffixes of A according to their first ` characters,
we focus on the substring A[0..2` − 1] and apply the suffix sorting algorithm of Larsson and
Sadakane [15] for dlog `e rounds, which can figure out the order of the suffixes according to the
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first ` characters. Then, for each k ∈ [0..`− 1], we extract the rank of Ak and store it into P [k].
The time required is O(` log `).

Step 2: Computing Q. For any k ∈ [0..` − 1], Q[k] = Rank(Bk,S(B)), which is equal
to SA−1

B [k]. By definition, SA−1
B [0] = ΨB[0], SA−1

B [1] = ΨB[ΨB[0]], and in general, SA−1
B [k] =

Ψ
(k+1)
B [0]. Thus, we can compute Q by evaluating Ψ(k)[0] iteratively for k = 1, . . . , `. The time

required is O(`).
Step 3: Sorting. Consider the tuples (P [k], Q[k]) for all k ∈ [0, ` − 1]. Perform the

sorting on these tuples in O(` log `) time, Then, for each k ∈ [0, ` − 1], M [k] is the order of
Rank(Ak,LS(A)).

Time and space requirement: Steps 1-3 altogether require O(` log `) time. As to be shown
later, we will also need the inverse of M , denoted M−1, which can be computed from M in
O(`) time. Note that M and M−1 each require `dlog ne bits, and the above steps require an
additional working space of 2`dlog ne bits (for storing P and Q). The total space requirement
is 4`dlog ne bits.

4.2 Rank of long suffixes among S(B)

This section shows that if ΨB is given, then the rank of the ` long suffixes of A among all
suffixes of B can be computed in O(` logn + n) time. Apart from ΨB, the space required is
` log n bits, which is essentially needed for storing the output.

For any character c, let #B(c) denote the number of suffixes of B starting with c, and let
αB(c) denote the number of suffixes of B whose starting character is lexicographically smaller
than c. Note that these numbers are stored in the auxiliary data structure of ΨB, and each of
them can be retrieved in O(1) time. All suffixes of B starting with c have a rank in the range
[αB(c), αB(c) + #B(c)− 1], which is denoted RB(c) below. The following lemma shows how to
determine rank incrementally, i.e., how to derive Rank(cX,S(B)) from Rank(X,S(B)) for any
string X and character c.

Lemma 6 Consider any string X and any character c. Let H denote the set {r ∈ RB(c) |
ΨB[r] < Rank(X,S(B))}. Then,

Rank(cX,S(B)) =

{

αB(c) if H is empty
1 + max {r | r ∈ H} otherwise

Proof: First, we claim that H stores the rank of all those suffixes of B which have c as the first
character, and which are lexicographically smaller than cX. The reason is as follows: Consider
any suffix of Bi whose first character is c. Let r be its rank among S(B). Note that r is within
RB(c). If Bi < cX, then Bi+1 < X. Denote the rank of Bi+1 as r′. Then r′ < Rank(X,S(B)).
On the other hand, by definition, ΨB[r] = SA−1

B [SAB[r]+1] = r′ (where SAB and SA−1
B denotes

the suffix array of B and its inverse). Therefore, ΨB[r] < Rank(X,S(B)). Reversing the
argument, we can show that for every r ∈ RB(c) with ΨB[r] < Rank(X,S(B)), the suffix of B
with rank r (i.e., BSAB [r]) is lexicographically smaller than cX. Thus, the claim follows.

We are now ready to prove the lemma. If H is empty, any suffix of B starting with character
c is lexicographically larger than or equal to cX. Then, Rank(cX,S(B)) is equal to the rank
of the single character c among S(B), which is αB(c). If H is not empty, Rank(cX,S(B)) =
αB(c) + |H|. By Corollary 1, ΨB[r] is strictly increasing for r ∈ RB(c), and H is equal to
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{αB(c), αB(c) + 1, . . . , αB(c) + |H| − 1}. Thus, max {r | r ∈ H} = αB(c) + |H| − 1, and the
lemma follows. �

Based on the above lemma, we can compute the required rank in a backward manner as
follows. The result is stored in an array L[0..` − 1] such that L[k] = Rank(Ak,S(B)) for all
k ∈ [0, `− 1].

For k = ` − 1 down to 0, compute L[k] as follows: Let c = A[k]. The suffix Ak

can be expressed as cAk+1. Note that Rank(Ak+1,S(B)) has been computed and
stored in L[k + 1].4 To compute L[k], we find the maximum r ∈ RB(c) satisfying
ΨB[r] < L[k + 1]. Since ΨB is strictly increasing in the range RB(c), we can use a
binary search to find the maximum r; this requires O(log n) time. If r exists, we set
L[k] to be r + 1; otherwise, we set L[k] to be αB(c).

Time and space requirement: The time required for computing L is O(` logn), and L occu-
pies `dlog ne bits. Thus, the total time and total space required are both O(n).

4.3 Computing ΨA

This section shows how to make use of the results of Sections 4.1 and 4.2 to compute ΨA in
O(` log n+n) time. For the space requirement, it takes 4`dlog ne+o(n) bits in addition to that
for maintaining ΨA and ΨB. Recall that the following three arrays are available.

1. An array M such that M [i] stores Rank(Ai,LS(A)).

2. An array M−1, which is the inverse of M , such that M−1[i] stores the position of the
suffix among LS(A) whose rank is i.

3. An array L such that L[i] stores Rank(Ai,S(B)).

By Fact 1, we can compute the rank of each long suffix Ak (where k ∈ [0, ` − 1]) among
S(A) by summing M [k] and L[k]. For the short suffixes of A, their rank among S(A) can be
figured out by adjusting their rank among S(B) according to distribution of the long suffixes.
Precisely, let m = |A|, and define V [0..m− 1] to be a bit vector such that V [i] = 1 if the suffix
of A with rank i is a long suffix, and V [i] = 0 otherwise. We need V to support two types of
efficient queries:

• rank0(V, i) and rank1(V, i) returns the number of 0’s and 1’s preceding V [i], respectively.

• select0(V, j) returns the position of the j-th 0 in V .

Before showing how to construct V , we present a simple way to make use of V to calculate the
rank of a short suffix among S(A) from its rank among S(B), and vice versa.

Lemma 7 For any short suffix x of A, let r = Rank(x,S(A)) and r′ = Rank(x,S(B)). Then,
r = select0(V, r′ + 1) and r′ = rank0(V, r).

4When k = `− 1, we assume that L[`] has been set to the value of ΨB [0]. Note that L[`] is the rank of A`

(or equivalently B0) among S(B), which is equal to SA−1

B
[0] = ΨB[0].

10



Proof: By definition, V [r] = 0. In the subarray V [0..r − 1], the number of 0’s is equal to the
number of short suffixes lexicographically smaller than x, which is equal to r′. Furthermore,
V [r] contains the (r′ + 1)-th 0. �

Next, we give the details of constructing V . Note that the number of bits in V depends on
the size of A, which can be as big as n.

Lemma 8 The bit vector V can be constructed from the array L in O(n) time.

Proof: We assume that |A| bits are allocated for storing V explicitly. We compute V from
L as follows: Recall that L stores the ranks of the long suffixes among S(B). These ranks can
solely determine which entries in V store the 1’s. We sort the ranks in L in ascending order,
denoted as r0, r1, · · · , r`−1. Then we fill V with the following bits: r0 0’s, a 1, (r1 − r0) 0’s, a 1,
· · ·, and finally (r`−1 − r`−2) 0’s, a 1, followed by all zeroes. �

There are several data structures in the literature that support the rank and select operations
on a bit vector in constant time [12, 19]. In particular, we can make use of the recent result
by Raman, et al. [19]; precisely, we can build a fully indexable dictionary for V (Lemma 2.3
in [19]) directly from L and we do not need to store the vector V explicitly. The size of this
data structure is log

(

n
`

)

+ O(n log log n
log n

) = o(n) bits, and the construction time remains O(n).

With this data structure, the retrieval of V [i] and the queries rank0(V, i), rank1(V, i), and
select0(V, j) are performed in O(1) time.

Finally, we are ready to show how to compute ΨA[r] for all r ∈ [0, m−1] where m = |A|, the
length of A. Recall that ΨA[r] is defined as SA−1

A [SAA[r] + 1], or equivalently, if Ak is the suffix
such that Rank(Ak,S(A)) = r, then ΨA[r] = Rank(Ak+1,S(A)). The following two lemmas
show how to make use of V to figure out ΨA[r] from ΨB[r].

Lemma 9 Consider any short suffix Ak whose rank among S(A) is r. Then
• Rank(Ak+1,S(B)) = ΨB[rank0(V, r)]; and
• Rank(Ak+1,S(A)) = select0(V, ΨB[rank0(V, r)] + 1).

Proof: Since Ak is a short suffix whose rank among all suffixes of A is r, its rank among all
suffixes of B is r′ = rank0(V, r). The rank of Ak+1 among all suffixes of B is p = ΨB[r′]. By
Lemma 7, ΨA[r], the rank of Ak+1 among all suffixes of A, is select0(V, p + 1). �

Lemma 10 Consider any long suffix Ak whose rank among S(A) is r. Then
• k = M−1[rank1(V, r)]; and
• if k < `−1 then Rank(Ak+1,S(A)) = M [k+1]+L[k+1]; otherwise, Rank(Ak+1,S(A)) =

select0(V, ΨB[0] + 1).

Proof: Since x is a long suffix, its rank among all long suffixes is r′ = rank1(V, r). By the
definition of M , k = M−1[r′]. Note that k is in the range [0, ` − 1]. If k < ` − 1, then ΨA[r],
which is the rank of Ak+1 among all suffixes of A, is equal to M [k + 1] + L[k + 1] (by Fact 1).

For the special case where k is equal to `− 1, ΨA[r] is equal to the rank of A` = B0 among
all suffixes of A. We can find this rank as follows: Compute the rank p of B0 among all suffixes
of B, which is equal to SA−1

B [0] = ΨB[0]. Then, by Lemma 7, the rank of B0 among all suffixes
of A is select0(V, p + 1). �
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Based on the above two lemmas, we can compute ΨA[r] sequentially for r = 0, 1, . . . , m− 1.
For the base case when r = 0, we note that ΨA[0], which is defined as SA−1[0] or the rank of A0

among all suffixes of A, is exactly M [0]+L[0] (by Fact 1). The details are depicted in Figure 2.

ΨA[0]←M [0] + L[0];
for r ← 1 to m− 1

if V [r] = 0 { % The suffix with rank r is a short suffix.

r′ ← rank0(V, r);
p← ΨB[r′];
ΨA[r]← select0(V, p + 1);

}
else { % The suffix with rank r is a long suffix.

r′ ← rank1(V, r);
k ←M−1[r′];
if k < `− 1

ΨA[r]←M [k + 1] + L[k + 1];
else {

p← ΨB[0];
ΨA[r]← select0(V, p + 1);

}
}

Figure 2: Computing ΨA[r] sequentially.

Calculating each ΨA[r] involves a constant number of O(1) time operations, and the whole
procedure takes O(m) = O(n) time. Combining the results of Sections 4.1 and 4.2, we have
the following lemma.

Lemma 11 Suppose that ΨB is given. Computing all the auxiliary data structures (M , M−1,
L, and V ) and then enumerating the values of ΨA can be done in O(` logn+n) time. Excluding
the space for representing ΨA and ΨB, the working space required is 4`dlog ne + n + o(n) bits.

As mentioned in Section 2, we can construct a compact representation for ΨA using O(n(H0+
1)) bits. For its auxiliary data structures, the Raman et al.’s dictionary for the α(c) values
can be computed directly in O(` + |Σ|) time based on examining M−1 sequentially and the
corresponding dictionary in ΨB (i.e., the one for the αB(c) values), while the remaining two
data structures are computed along with the construction of the compact representation of ΨA,
using an extra O(n) time.

Together with Lemma 11, we conclude this section with the following result.

Theorem 1 Given a string T of length n, the Ψ array of T can be computed in O(n log n) time
using O(n(H0 + 1)) bits.

Proof: The construction is divided into dn/`e = O(log n) phases. Recall that ` = Θ(n/ log n).
Each phase takes O(` log n + n) = O(n) time, and the overall time is O(n log n).
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For the space requirement, it takes 4`dlog ne+o(n) bits in addition to that for two Ψ arrays
and their auxiliary data structures. The total space is thus O(n(H0 +1))+4`dlog ne bits. Since
` = Θ(n/ log n), the theorem follows. �

5 Constructing Other Indexes

We have shown an algorithm to construct the array Ψ, which is the basic form of the CSA,
using O(n(H0 +1)) bits working space. Here, we show how to apply the algorithm to construct
the hierarchical CSA, and how to convert Ψ into the FM-index in a space-efficient manner.

5.1 Constructing the hierarchical CSA structures

The original compressed suffix array [7] is a hierarchical data structure which supports efficient
retrieval of any SA value in O(log log|Σ| n) time. Let k be any integer in the range [0, log log|Σ| n].

Let Tk denote the string obtained by concatenating every 2k characters of T . The string Tk can
be viewed as a text whose characters are drawn from Σ2k

. The hierarchical CSA of T consists
of the Ψk functions built on top of Tk, where k = 0, 1, . . . , log log|Σ| n. And, at the final level
(k = log log|Σ| n), it stores explicitly the SAk values for the corresponding Tk. Each Ψk function
is coupled with a bit-vector Bk and the Jacobson’s data structure for Bk so that the rank
function rank(Bk, i)—which returns the number of 1’s in Bk[0..i]—can be answered in O(1)
time. In summary, the total space to store the hierarchical CSA is at most O(n(H0 log log n+1))
bits. SA[i] can be computed recursively in O(log log|Σ| n) time as follows:

SAk[i] =

{

2 · SAk+1[rank(Bk, i)] if Bk[i] = 1

SAk[Ψk(i)]− 1 if Bk[i] = 0

For the construction, Ψk can be computed in O((n logn)/2k) time based on Theorem 1.
After that, by letting t = SA−1

k [0] and computing Ψi
k[t] iteratively for each i, we obtain the

vector Bk and its auxiliary data structure in O(n/2k) time. For the SAk at the final level, it
can be computed in O(n) time, since Tk is a string of O(n/ logn) characters. Thus, the total
time is O(n logn). For the space requirement, apart from the space of the final output, the
above algorithm takes an extra O(n(H0 + 1)) bits for working space. This gives the following
theorem.

Theorem 2 Given the text T over an alphabet Σ, the hierarchical structure of CSA in [7]
can be computed in O(n log n) time and O(n(H0 + 1)) bits of working space in addition to the
output, where H0 denotes the order-0 entropy of T . With this data structure, each SA value
can be reported in O(log log|Σ| n) time.

5.2 Converting Ψ into the FM-index

Apart from CSA, there is another compressed index for suffix array called FM-index [3], which
has demonstrated its compactness in size while showing competitive performance in searching
a pattern recently [4]. The index is particularly suited for text with small-sized alphabet. The
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core part of the construction algorithm involves the Burrows-Wheeler transformation [1], which
is a common procedure used in various data compression algorithms, such as bzip2 [23].

Precisely, the Burrows-Wheeler transformation transforms a text T of length n into another
text W , where W is shown to be compressible in terms of the empirical entropy of T [17]. The
transformed text W is defined such that W [i] = T [SA[i] − 1] if SA[i] > 0, and W [i] = $ if
SA[i] = 0.

Given the Ψ array of T , we observe that for any p, SA[Ψk[p]] = SA[p] + k [21]. Now, by
setting p = Ψ[0] = SA−1[0], and computing Ψk[p] iteratively for k = 1, 2, . . . , n, we obtain the
values of SA[Ψk[p]] = k. Immediately, we can set W [Ψk[p]] = T [k− 1]. Since each computation
of Ψ takes O(1) time, W can be constructed in O(n) time.

Thus, we have the following theorem.

Lemma 12 Given the text T and the Ψ array of T , the Burrows-Wheeler transformation on
T can be output directly in O(n log |Σ|) bits space and in O(n) time.

Once the Burrows-Wheeler transformation is completed, FM-index can be created by en-
coding the transformed text W using Move-to-Front encoding and Run-Length encoding [3].
When the alphabet size is small, precisely, when |Σ| log |Σ| = O(log n), Move-to-Front encoding
and Run-Length encoding can be done in O(n) time based on a pre-computed table of o(n)
bits. In summary, this encoding procedure takes O(n) time using o(n)-bit space in addition to
the output index. Thus, we have the following result.

Theorem 3 Given the text T over a small alphabet Σ such that |Σ| log |Σ| = O(log n), and the
Ψ function of T , we can construct the FM-index of T in O(n) time using O(n log |Σ|) bits in
addition to the output index.
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