
Compressed Data Structures:

Dictionaries and Data-Aware Measures?

Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter??

{agupta,wkhon,rahul,jsv}@cs.purdue.edu

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907–2066, USA

Abstract. We propose measures for compressed data structures, in which space usage is mea-
sured in a data-aware manner. In particular, we consider the fundamental dictionary problem

on set data, where the task is to construct a data structure to represent a set S of n items
out of a universe U = {0, . . . , u − 1} and support various queries on S. We use a well-known
data-aware measure for set data called gap to bound the space of our data structures.

We describe a novel dictionary structure taking gap+O(n log(u/n)/ log n)+O(n log log(u/n))
bits. Under the RAM model, our dictionary supports membership, rank, select, and prede-
cessor queries in nearly optimal time, matching the time bound of Andersson and Thorup’s
predecessor structure [AT00], while simultaneously improving upon their space usage. Our
dictionary structure uses exactly gap bits in the leading term (i.e., the constant factor is 1)
and answers queries in near-optimal time. When seen from the worst case perspective, we
present the first O(n log(u/n))-bit dictionary structure which supports these queries in near-
optimal time under RAM model. We also build a dictionary which requires the same space
and supports membership, select, and partial rank queries even more quickly in O(log log n)
time. To the best of our knowledge, this is the first of a kind result which achieves data-aware
space usage and retains near-optimal time.

1 Introduction

The proliferation of data is suffocating our abilities to manage information. The infor-
mation content in many cases is relatively low, and with proper representation, there
is much potential to save space. The new trend of data structure design considers time
and space efficiency together: The ultimate goal is to build structures that operate
in the optimal (or nearly so) time bound, while requiring the minimum amount of
space, tuned for the particular input data.

Ideally, the space required for a structure should be defined with respect to the
Kolmogorov complexity of the data upon which the structure is built, as it is the
space of the smallest program that can generate the input data. Unfortunately, it is
undecidable for arbitrary input, making it an inconvenient measure for practical use.
On the other hand, there may be simple space measures that are sensitive enough to
capture the information in the input data set. Consider set data, which represent a
subset S of n items from a universe U = {0, . . . , u − 1}. In many natural examples
of set data, items are not purely randomly distributed among the universe. Examples
include IP addresses, UPC barcodes, and ISBN numbers. These types of data sets
are clustered and items are close to one another.

The gap measure [BMNM+93] (described formally in Section 2.2) has been used
extensively as a reasonable space measure in the context of inverted indexes [WMB99].

? Support was provided in part by the Army Research Office through grant DAAD20–03–1–0321 and by
the National Science Foundation through research grant IIS–0415097.

?? Support was provided in part by an IBM Faculty Research Grant.

The gap measure counts the space required to encode the distances between successive
items and is usually much less than the information-theoretic (combinatorial) lower
bound dlog

(

u
n

)

e ≈ n log(u/n) bits.1 (This bound is known as the information-theoretic
minimum because it is the minimum number of bits needed to differentiate between
the

(

u
n

)

possible subsets of n items out of a universe of size u.) A gap-style encoding
can be much smaller than dlog

(

u
n

)

e bits for many of the data sets above, since it
exploits short distances between items.

In this paper, we present compressed representations for both fully indexable
dictionaries (FID) and indexable dictionaries (ID), improving the space required
by previous results without sacrificing near-optimal query time. In particular, un-
der the unit-cost RAM model, we develop a fully indexable dictionary (FID)—a
data structure supporting rank and select queries—of size gap +O(n log(u/n)/ log n)
+O(n log log(u/n)) bits, while supporting rank in time matching Andersson and
Thorup’s (nearly-optimal) predecessor structure [AT00] and select even faster in
O(log log n) time. For typical parameter values (namely when n = o(u)), our fully
indexable dictionary is asymptotically equal to gap space (with a constant of 1) and
is strictly less than the information-theoretic minimum dlog

(

u
n

)

e bits. To our knowl-
edge, this result is the first of its kind. Even when considered from a worst-case
perspective, our data structures are the first to take O(n log(u/n)) bits with near-
optimal query time. We also develop an indexable dictionary (ID)—a data structure
supporting partial rank and select queries—in the same number of bits that supports
each query even faster in O(log log n) time. This result is the first to operate with
gap-style bounds in space with time sublogarithmic in terms of the number of items
stored. Moreover, our data structures are useful in practice; we have a practical im-
plementation and we discuss algorithmic engineering and experimental results in a
companion paper [GHSV05]. Our preliminary results show that gap is about 40−60%
of dlog

(

u
n

)

e for many practical data sets.

1.1 Comparisons to Previous Work

Previously, Jacobson [Jac89], Munro [Mun96], Brodnik et al. [BM99], Pagh [Pag99],
and Raman et al. [RRR02] develop dictionaries that support constant-time queries.
The best among these are the ID (supporting partial rank and select) and the FID
(supporting rank and select) by Raman et al. [RRR02], which both support constant-
time queries, and respectively require only

⌈

log
(

u
n

)⌉

+ o(n) + O(log log u) bits and
⌈

log
(

u
n

)⌉

+ O(u log log u/ log u) + O(log log u) bits. These results seem quite strong,
as the constant factor associated with the information-theoretic minimum term is 1;
unfortunately, the space is not bounded in a data-aware manner. Recent work by
Grossi and Sadakane [GS06] achieves an FID with constant-time queries that re-
quires gap +O(u log log u/ logu) bits of space. Still, these FID structures do not work
well when n � u, as the o(u) term will be much (even exponentially) larger than
the information-theoretic minimum term dlog

(

u
n

)

e, dwarfing any savings we want to
achieve. Consider a typical example of maintaining a dictionary for IP lookup, storing
217 IP addresses out of a universe of size 232. In this case, dlog

(

u
n

)

e is roughly 345,661

1 Throughout the paper, we assume the base of the logarithm is 2.

(about 218) bits while their o(u) term is roughly 6.71 × 108 (about 229) bits—several
orders of magnitude larger than the information-theoretic minimum dlog

(

u
n

)

e bits.
Blandford and Blelloch [BB04] recently propose an interesting scheme that allows

easy transformation of any FID implemented with O(n) pointers into another that
requires O(gap) + O(uα log u) bits for any α < 1.2 After the transformation, query
time is a factor of 1/α slower than the original dictionary.

A fundamental aspect of a dictionary’s search capabilities is captured by the
predecessor problem, since dictionaries that (implicitly) solve the predecessor prob-
lem require fundamentally more space and time than those that do not. Precisely,
the predecessor query determines the largest item in S smaller than the query.
Beame and Fich [BF99] describe a data structure that takes O(n2 log u) bits of
space so that membership and predecessor queries can be solved in BF (u, n) =
O(min{(log log u)/(log log log u),

√

(log n)/(log log n)}) time. They also show that
this bound is tight as long as we have only O(nO(1) log u) bits available.3

Andersson and Thorup [AT00] provide a transformation to Beame and Fich’s
data structure, improving the space to O(n logu) bits and making the data structure
dynamic using exponential search trees. However, the query time increases to

AT (u, n) = O

(

min

{
√

log n

log log n
,

log log u

log log log u
· log log n, log log n +

log n

log log u

})

.

Since rank and select can be used to answer predecessor queries, we improve
Andersson and Thorup’s structure in terms of space without sacrificing query time.
In the worst case, our fully indexable dictionary compares favorably with both Raman
et al. [RRR02] and Blandford and Blelloch [BB04]. With respect to the former, though
we cannot support O(1)-time queries, we have eliminated the problematic o(u) space
term. Our query time—which is AT (u, n)—is already close to the optimal BF (u, n).
When comparing with [BB04], we note that their method can be tuned by some of the
techniques developed in our paper to achieve (1 + ε)gap bits of space. However, this
increases their search time by a multiplicative factor of 1/ε. In addition, they require
either complex RAM operations or a decoding table that requires (potentially) much
more space. For our indexable dictionary, when compared with Raman et al.’s ID
structure [RRR02], we pay a small price in the lookup time in exchange for achieving
space bounds in terms of gap, which may be significant in practice.

2 Dictionaries and Data Aware Measures

Let S = 〈s1, . . . , sn〉 be an ordered set of n items from a universe U = {0, 1, . . . , u−1}
of size u; that is, i < j implies si < sj. We want to represent S in a succinct form so
that we can also perform basic dictionary queries in its compressed representation.
We define dictionaries more formally in Section 2.1. In Section 2.2 we describe two
measures for representing the set S, motivating these as reasonable measures for

2 They only claim O(n log((u + n)/n)) + O(uα log u) bits in their paper.
3 It is this result which necessitates Raman et al.’s FID [RRR02] o(u) space term, since constant-time rank

and select queries imply constant-time predecessor queries as well.

analyzing the space required by a dictionary. We further show strong relationships
between these measures in Section 2.3.

2.1 The Dictionary Problem

The dictionary problem appears as a fundamental black box in a number of applica-
tions used to offer fast access (for some queries, even constant-time access) to the data.
Some examples include suffix arrays and IP lookup tries. In particular, dictionaries
are key building blocks in encoding the Burrows-Wheeler transform (BWT) of a text
succinctly and supporting fast decoding. Our interest is to exploit the great poten-
tial for a functional but compressed dictionary data structure. In some applications,
dictionaries are the bottleneck, both in terms of space and query time.

We describe some fundamental queries on set data. Here, a ∈ U and 1 ≤ i ≤ n.
We define member(S, a), rank(S, a), select(S, i), prank(S, a), and pred(S, a) below.

rank(S, a) =
∣

∣{si|si ≤ a}
∣

∣

select(S, i) = si

member(S, a) = 1 if a ∈ S, 0 otherwise
prank(S, a) = rank(S, a) if a ∈ S, −1 otherwise
pred(S, a) = max{si|si ≤ a}

Definition 1. An indexable dictionary (ID) represents a subset S ⊆ U and supports
the queries prank(S, a) and select(S, i). A fully indexable dictionary (FID) represents
a subset S ⊆ U and supports the queries rank(S, a) and select(S, i).

Fully indexable dictionaries can solve predecessor queries, and so they immediately
find application in rich problem areas as IP lookup structures [CDG99], compressed
text indexing [GGV03], and suffix arrays [GV00]. Sometimes, an item si is associated
with a piece of satellite data di and an operation to lookup si returns the satellite
data di. Note that this lookup can be supported by using rank and select operations.

2.2 The gap and trie Measures

One well-known method for representing the set S is gap encoding [BMNM+93], which
is often used in compressing inverted indexes. (We refer the reader to [WMB99] for
a detailed treatment of the various applications of this method, as well as a source
for further references.) Consider the gaps between consecutive items in S, where the
ith gap gi is equal to si − si−1. We can now represent the set S as the stream of
gaps G = g1, . . . , gn, where g1 = s1, along with the value n. The stream G of gaps can
be stored using variable length encoding based on their size. Suppose we could store
each gi in dlog(gi + 1)e bits. Then, the total space, which we call the gap measure, is

gap(S) =
n
∑

i=1

dlog(gi + 1)e

bits. Note that a representation of S in gap(S) bits is not decodable, since we need to
mark the separation between successive items. One popular technique to “mark” these
separators is by using a prefix code such as the δ code [Eli75]. In δ coding, we represent
each gi in dlog(gi+1)e+2 dlogdlog(gi + 1)ee bits, where the first dlogdlog(gi + 1)ee bits

are the unary encoding of the number dlogdlog(gi + 1)ee, the next dlogdlog(gi + 1)ee
bits are the binary representation of the number dlog(gi+1)e, and the final dlog(gi+1)e
bits are the binary representation of gi. With proper schemes, we can represent the
stream of gaps G = g1, g2, ..., gn by concatenating the encoding of each gi such that G
is uniquely decodable. We refer to these extra bits of overhead beyond gap(S) as the
decoding overhead Z(S). For δ coding, Z(S) = 2

∑

i dlogdlog(gi + 1)ee bits.
By Jensen’s inequality,4 gap(S) is maximized when all gaps gi are the same. In

this case, gap(S) would require roughly n log(u/n) bits, since each of the n gaps
would be of size u/n. Z(S) is also maximized in this case for δ coding. Hence, Z(S) is
roughly 2n log log(u/n) bits. Other prefix codes, such as the γ code [Eli75] and some
combination of Huffman and fixed-length coding result in a somewhat different Z(S).
In this paper, we use the δ encoding scheme, and denote the bit representation of S
using this encoding by GAP(S). The size of GAP(S) is |GAP(S)| = gap(S) + Z(S) bits.

Another method for compression of S is the prefix omission method (POM) [KS02],
which is generally used to represent bitstrings of arbitrary length. Consider the bit-
strings sorted lexicographically. We can represent each bitstring with respect to the
previous bitstring by omitting the common prefix of the two. To compress S by POM,
we think of each item of S as its log u-length bit representation. The POM for S can
also be seen as a subtree (of n leaves) of the complete binary tree on u leaves (which
is a trie). Each root-to-leaf path in this trie defines an item s in S.

For x, y ∈ S, let x	 y denote the bitstring formed by omitting the common prefix
of x and y from the bit representation of x. To represent S by POM, we generate
the stream L = l1, l2, . . . , ln, where l1 is the bit representation of s1 in log u bits
and li = si 	 si−1. Let |li| denote the number of bits in li. Thus, the cost of this
representation, which we call the trie measure, is

trie(S) =

n
∑

i=1

|li| = |s1| +

n
∑

i=2

|si 	 si−1|,

which equals the number of edges in the trie. Similar to the gap measure, the above
representation with trie(S) bits is not decodable as each string li is of variable length.
Hence, we need some extra bits Z ′(S) for decoding, which takes 2

∑

idlog |li|e bits in
the case of δ encoding. Similarly, we use TRIE(S) to denote the bit representation
of S using POM, which takes |TRIE(S)| = trie(S) + Z ′(S) bits of space.

Let S + a denote the set in which the positive integer a is added (modulo u) to
each item of S. Thus, the set S + a is {(s1 + a) mod u, (s2 + a) mod u, . . . , (st + a)
mod u}. We define the shifted trie measure strie(S) = mina{trie(S + a)}, which
corresponds to the number of bits needed to compress S by POM under the ‘best
shift’. We denote STRIE(S) to be the corresponding TRIE(S + a).

2.3 Relationship Between gap, trie and strie

In this section, we show a strong relationship between the gap, trie and strie measures.
For any item si, dlog(gi +1)e is always smaller than |li|, but |li| could be much larger.

4 For a concave function f and x1 + x2 + · · · + xk = x,
�

i
f(xi) is maximized when xi = x/k.

For example, when si−1 = 2k − 1 and si = 2k, |li| = k even though dlog(gi + 1)e = 1.
We show that this scenario cannot occur too frequently and prove that trie(S) ≤
2gap(S). However, by applying a ‘random shift’, such cases are nearly eliminated. In
the following lemma, we bound trie(S) more tightly using this intuition. We omit the
proof of Lemma 1 due to space constraints, but it follows from a counting argument
for the number of bits required for a particular gap gi under all possible shifts.

Lemma 1. The trie measure on the set S +a, trie(S +a), is at most gap(S)+2n−2
bits on average over all values of a ∈ [1, u]. Thus the shifted trie measure, strie(S),
is at most gap(S) + 2n − 2.

Note that |li| is bounded on average by dlog(gi +1)e+2 bits. Since the decoding over-
head is d2 log |li|e with the δ code, we can bound the total overhead 2

∑

idlog |li|e by
2n log log(u/n) bits using Jensen’s inequality. Thus, the space requirement |STRIE(S)|
is at most strie(S) + 2n log log(u/n) + log u bits.

0

0

0 0

0 0

0

0

0

0

1

1

1

1 111

1

1513129841

9 4 1 8 13 12 15 1001 0100 001 0 101 0 11

9

12

4

151 8

13

Fig. 1. The left hand side
shows a binary search tree
built on the items 1, 4, 8,
9, 12, 13, and 15. Beneath
that is its pre-order layout on
disk, where the arrows rep-
resent pointers to the right
subtree. The right hand side
shows the trie built on the
same items. Beneath that is
the corresponding layout on
disk, but each item s is en-
coded with respect to anc(s).
For instance, 8 is encoded in
the layout on the right as 0,
since anc(8) = 9 differs from
it by a single bit.

3 Binary Searchable Dictionary Representation

Despite all the development on the POM model, the trie encoding of S does not
support time-efficient queries as we would like. Klein and Shapira [KS02] use the trie
encoding to search in compressed dictionaries, but their searching algorithm essen-
tially consists of a linear scan of the items in the dictionary and takes at least Ω(n)
time. Most algorithms using gap encoding also need a linear scan. In this section, we
build a binary searchable data structure BSD, which resolves rank and select queries
in O(log n) time. We show that the space required by this structure is gap bits plus
low-order terms. In fact, the main point of this section is in showing that a binary-
searchable representation requires about the same number of bits as simple linear
encoding schemes. Also, BSD is our main building block and will be used later in this
paper to support fast lookup in our FID and ID dictionary structures.

The BSD structure encodes a pre-order traversal of a balanced binary search tree T
built on the n items of S. In Figure 1, the pre-order traversal for the set S is 9, 4, 1, 8,
13, 12, and 15. The key point is that instead of storing each item si explicitly in log u
bits, we encode an item with respect to an ancestor anc(si), defined as follows. Let
Ai be the set of all the ancestors of si in the binary search tree T . Then, anc(si) =

x ∈ Ai such that lcp(si, x) is maximized over all ancestors in Ai. We represent si by
si 	 anc(si) using log u − |lcp(si, anc(si))| bits, similar to our trie encoding. Now we
define the BSD(S) encoding.

We use a recursive layout to describe the pre-order traversal of the binary search
tree of n items. Let the subsets SL = 〈s1, s2, ..., sdn/2e−1〉 and SR = 〈sdn/2e+1, ..., sn〉
represent the left and right subtrees of the sdn/2eth item. In general, we define Si,j =
〈si, si+1, ...sj〉. Let anc(sdn/2e) = 0. For BSD(S), let |BSD(S)| denote the number of bits
needed to encode BSD(S). Then, we define the BSD encoding as

BSD(S) = 〈sdn/2e 	 anc(sdn/2e); |BSD(SL)|; BSD(SL); BSD(SR)〉.

Note that sdn/2e 	 anc(sdn/2e) is a variable-length string, which is stored using δ
coding. The term |BSD(SL)| constitutes additional overhead but is needed in order to
jump to the right half of the set while searching. It turns out that BSD requires nearly
the same space as does the TRIE encoding. Next, we describe how rank and select
functions are supported in O(log n) time using BSD(S) and analyze its space usage.

In Sections 4 and 5, we use BSD(S) as a black box on O(log n) items and achieve
O(log log n) time; in order to do so, we must be able to decode a δ-coded item (or
bitstring) in O(1) time in the RAM model. We assume that the word size of the
machine is at least log u bits, and that we are allowed to perform addition, subtraction,
multiplication, and bitshift operations in O(1) time. We also assume that we can
calculate the position of the leftmost 1 of a subword x of log log u bits in O(1) time.
(This task is equivalent to calculating dlog(x + 1)e when the word x is seen as an
integer.) We can also easily encode and decode the 	 operator using bitshifts and
additions. These assumptions are sufficient to allow O(1) decoding time. If this model
is not applicable, we can simulate the decoding by explicitly storing the decoding
result of every possible log log u-bit number in a table with log u entries. Note that
this table takes O(log u log log log u) bits, which is negligible overhead.

In order to support rank and select, we just need to store the single value n (in
log n bits) at the beginning of the BSD to indicate how many items are stored within
the structure. Since our structure is a well-defined balanced binary tree, at any node x
with nx items, we know that the size of our left subtree contains dnx/2e − 1 items,
and our right subtree contains nx − dnx/2e items. Hence, we can compute rank
and select based upon this information. More precisely, given BSD(S), rank(S, a)
and select(S, i) can be computed in O(logn) time by calling the recursive functions
rrank(BSD(S), a, 0, u, n) and rselect(BSD(S), i, 0, u, n) as detailed below.

function rrank(B, a, `, r, n)
if (n = 0) return 0;
x← root(B);
z ← decode(x, `, r);
if (z = a) return dn/2e + 1;
else if (z < a)

return dn/2e+ rrank(BSD(SR), a, z, r, n−dn/2e);
else return rrank(BSD(SL), a, `, z, dn/2e − 1);

function rselect(B, i, `, r, n)
x← root(BSD(S));
z ← decode(x, `, r);
if (i = dn/2e) return z;
else if (i > dn/2e)

return rselect(BSD(SR), i−dn/2e, z, r, n−dn/2e);
else return rselect(BSD(SL), i, `, z, dn/2e − 1);

In the pseudocode, the function root(B) returns the first encoded string in B
(i.e., root(B) = si 	 anc(si)), and the function decode(x, `, r) returns the item si

that corresponds to the root of B. The latter function can be computed by first

determining anc(si), which is one of ` or r based on the first bit of root(B). Then,
si = (anc(si) div 2y) × 2y + root(B), where y = |root(B)|.

We denote rank(S, a) and select(S, i) functions for BSD(S) by BSD rank(B, a)
and BSD select(B, i) where B is a pointer (of log u bits) to BSD(S). We shall use this
notation in Sections 4 and 5. We now bound the space of our BSD(S) representation.

Lemma 2. The BSD(S) representation requires at most trie(S) + O(n log log(u/n))
bits and supports rank and select in O(log n) time.

Proof. (sketch) The space of BSD(S) can be divided into three parts: (i) the space for
all si	anc(si); (ii) their decoding overhead; and (iii) the space to encode all |BSD(SL)|,
used to jump to the right half of the encoding. The space for (i) can be shown
to be equal to the number of edges in the trie, which is exactly trie(S). For (ii),
the overhead is analogous to Z(S) and we can bound it by O(n log log(u/n)) using
Jensen’s inequality. For (iii), it can be bounded by a path recursion sum and shown
to be O(n log log(u/n) + n) bits. ut

The above lemma suggests that BSD(S+a) requires mina{|BSD(S+a)|} bits, which
is at most gap(S) + O(n log log(u/n)) bits by Lemma 1. For the rest of the paper, we
assume the BSD representation for S is based on its best shift. We obtain the following
theorem, which is used in constructing our data structures in Sections 4 and 5.

Theorem 1 (BSD). The BSD(S) representation is a fully indexable dictionary (FID)
requires gap(S)+O(n log log(u/n)) bits and supports rank and select in O(log n) time.

4 The Fully Indexable Dictionary Structure

We describe our structure in a bottom-up way. At the bottom level, we store a BSD

dictionary for every log2 n items from set S, each of which can resolve a rank or se-
lect query in O(log log n) time. We also store B.first rank along with each BSD B,
where B.first rank is the rank in S of its first item in B. We also keep an ar-
ray P [1..dn/ log2 ne], where P [i] stores a pointer to the ith BSD structure, which stores
the items s(i−1) log2 n+1, . . . , si log2 n. This structure alone is sufficient to support select.

In order to support rank, let Ŝ = {si|i mod (log2 n) = 1} be the set of smallest
items from each BSD. We build an instance of Andersson and Thorup’s predecessor
structure [AT00] on Ŝ, called R. To support rank, we use a lookup dictionary L from
Section 2.1 built on Ŝ as keys with pointers to the corresponding BSD as satellite
data. We denote the process of looking up the satellite data associated with s ∈ Ŝ by
L.lookup(s). Then, rank and select can be solved as follows.

function rank(S, a)
s← pred(R,a);
B ← L.lookup(s);
return B.first rank + BSD rank (B, a);

function select(S, i)
j ← di/(log2 n)e;
B ← P [j];
return BSD select (B, i −B.first rank + 1);

We obtain the main theorem below, along with a worst-case analysis, since gap
and O(n log log(u/n)) are bounded by O(n log(u/n)).

Theorem 2. Given a set S of n items from a universe [1, u], we implement an FID
in gap(S)+O(n log(u/n)/ log n)+O(n log log(u/n)) bits so that rank takes AT (u, n)
time and select takes O(log log n) time. In the worst case, our data structure takes
O(n log(u/n)) bits of space with the same time bounds.

5 The Indexable Dictionary Structure

In this section, we build upon our earlier approach and partition S into lower level
BSD structures, each of size at most log3 n. We use a top level ‘distributor’ structure to
access the correct BSD while answering a rank query. If the query item is not present
in S, our top level distributor may not return any associated BSD; therefore, we cannot
support rank or predecessor queries.

Our top level distributor takes O(log log n) time to return the correct BSD, since our
partitioning scheme is somewhat more complex than that of our FID. Since searching
in an O(log n) size BSD structure is similarly bounded, we can support partial rank and
select queries in O(log log n) time. To bound the overhead space required by our top
level distributor, we limit the number of partitions to at most O(n log log n/ log3 n)
to match the same second-order term as in our FID. Next, we outline our top level
distributor structure, which is similar to the van Emde Boas (VEB) tree [vEBKZ77].
With this distributor structure, for any x ∈ U , we can either report that x /∈ S or
obtain the BSD that might contain x.

Our distributor structure is a recursive structure analogous to a VEB tree. Instead
of having O(log log u) levels of recursion as in the case for a VEB tree, our distributor
only has h = 3 log log n levels. At the top level (Level 1), we have a single distributor
(with parameter p = 0 to be explained shortly) to distribute all items in S. For
level i = 1 to h−1, a Level i distributor with parameter p connects to some Level i+1
distributors, which are then used to distribute the items recursively; the parameter p
indicates that all the items in the distributor share the same first p bits. At the
bottom level (Level h), a Level h distributor directs the items to their designated BSD

structures. More precisely, for i = 1 to h−1, a Level i distributor with parameter p =
pi works as follows:
1. Partition the items into groups according to the first pi + log u/2i bits.
2. For each group with more than log3 n items (which we call a dense group), the

items are passed to a Level i + 1 distributor with parameter p = pi + log u/2i.
3. For all items not in a dense group, they are grouped together.

(a) If the number of items is at most log3 n, the items are passed to a Level h
distributor with parameter p = pi.

(b) Else, the items are passed to a Level i + 1 distributor with parameter p = pi.

Theorem 3. Given a set S of n items from a universe [1, u], we implement an in-
dexable dictionary (ID) in gap(S)+O(n log(u/n)/ log n)+O(n log log(u/n)) bits sup-
porting partial rank and select queries in O(log log n) time.

6 Conclusions

In this paper, we have formalized and developed measures for analyzing the space
needed to store set data. These measures provide a framework for further investiga-

tion of compressed data structuring techniques. We have achieved a fully indexable
dictionary that operates in near-optimal time (AT (u, n)) to support rank, select, and
predecessor queries, while taking just gap + O(n log(u/n)/ logn) + O(n log log(u/n))
bits of storage. Our result improves a number of existing compressed data struc-
tures [AT00,RRR02,BB04] by reducing space usage, while maintaining nearly-optimal
time bounds. Our gap term has a constant of 1, which is extremely important when
considering space efficiency. Equally important are the properties of the the other
space terms—if n = o(u), they amount to o(log

(

u
n

)

) bits. Also, our dictionary is the
first that achieves O(n log(u/n)) bits of space, without sacrificing the query times. We
also provide an indexable dictionary which operates in the same space and supports
queries in O(log log n) time.

References
[AT00] A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic searching and priority

queues. In Proceedings of the ACM Symposium on Theory of Computing, 2000.
[BB04] D. Blandford and G. Blelloch. Compact representations of ordered sets. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms, 2004.
[BF99] P. Beame and F. Fich. Optimal bounds for the predecessor problem. In Proceedings of the

ACM Symposium on Theory of Computing, 1999.
[BM99] A. Brodnik and I. Munro. Membership in constant time and almost-minimum space. SIAM

Journal on Computing, 28(5):1627–1640, October 1999.
[BMNM+93] T. C. Bell, A. Moffat, C. G. Nevill-Manning, I. H. Witten, and J. Zobel. Data compression in

full-text retrieval systems. Journal of the American Society for Information Science, 44(9):508–
531, 1993.

[CDG99] P. Crescenzi, L. Dardini, and R. Grossi. Ip address lookup made fast and simple. In Proceedings

of the European Symposium on Algorithms, pages 65–76, 1999.
[Eli75] P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on

Information Theory, IT-21:194–203, 1975.
[GGV03] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms, January 2003.
[GHSV05] A. Gupta, W. K. Hon, R. Shah, and J. S. Vitter. Compressed dictionaries: Space measures,

data sets and experiments, 2005. In preparation.
[GS06] Roberto Grossi and Kunihiko Sadakane. Squeezing succinct data structures into entropy

bounds. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. To appear,
2006.

[GV00] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. In SIAM Journal on Computing, 35(2):378–407. A shorter

version appeared in the ACM Symposium on Theory of Computing, May 2000.
[Jac89] G. Jacobson. Succinct static data structures. Technical Report CMU-CS-89-112, Department

of Computer Science, Carnegie-Mellon University, January 1989.
[KS02] S. T. Klein and D. Shapira. Searching in compressed dictionaries. In Proceedings of the IEEE

Data Compression Conference, 2002.
[Mun96] J. I. Munro. Tables. Foundations of Software Technology and Theoretical Computer Science,

16:37–42, 1996.
[Pag99] R. Pagh. Low redundancy in static dictionaries with O(1) worst case lookup time. In Proceed-

ings of the International Colloquium on Automata, Languages, and Programming, 1999.
[RRR02] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to

encoding k-ary trees and multisets. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms, pages 233–242, 2002.
[vEBKZ77] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority

queue. Math. Systems Theory, 10:99–127, 1977.
[WMB99] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann Publishers, Los Altos, CA, 2nd edition, 1999.

