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Let T be a string with n characters over an alphabet of constant size. The recent breakthrough
on compressed indexing allows us to build an index for T in optimal space (i.e., O(n) bits), while
supporting very efficient pattern matching [Ferragina and Manzini 2000; Grossi and Vitter 2000].
Yet the compressed nature of such indexes also makes them difficult to update dynamically.

This paper extends the work on optimal-space indexing to a dynamic collection of texts. Our
first result is a compressed solution to the library management problem, where we show an index
of O(n) bits for a text collection L of total length n, which can be updated in O(|T | log n) time
when a text T is inserted or deleted from L; also, the index supports searching the occurrences
of any pattern P in all texts in L in O(|P | log n + occ log2 n) time, where occ is the number of
occurrences.

Our second result is a compressed solution to the dictionary matching problem, where we
show an index of O(d) bits for a pattern collection D of total length d, which can be updated
in O(|P | log2 d) time when a pattern P is inserted or deleted from D; also, the index supports

searching the occurrences of all patterns of D in any text T in O
(
(|T |+ occ) log2 d

)
time. When

compared with the O(d log d)-bit suffix tree based solution of Amir et al. [1995], the compact
solution increases the query time by roughly a factor of log d only.

The solution of the dictionary matching problem is based on a new compressed representation
of a suffix tree. Precisely, we give an O(n)-bit representation of a suffix tree for a dynamic
collection of texts whose total length is n, which supports insertion and deletion of a text T in
O(|T | log2 n) time, as well as all suffix tree traversal operations, including forward and backward
suffix links. This work can be regarded as a generalization of the compressed representation of
static texts. In the study of the above result, we also derive the first O(n)-bit representation for
maintaining n pairs of balanced parentheses in O(log n/ log log n) time per operation, matching
the time complexity of the previous O(n log n)-bit solution.

This paper combines the results of two papers which appeared in Proceedings of Symposium on
Combinatorial Pattern Matching (CPM), 2004, and in Proceedings of Symposium on Discrete
Algorithms (SODA), 2005, respectively.
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Categories and Subject Descriptors: E.1 [Data Structures]: ; E.4 [Coding and Information
Theory]: Data Compaction and Compression; F.2.2 [Non-numerical Algorithms and Prob-
lems]: Pattern Matching; H.3.1 [Content Analysis and Indexing]: Dictionaries; Indexing
Methods

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Compressed Suffix Tree, String Matching

1. INTRODUCTION

Indexing a text to support efficient pattern matching has been studied extensively.
The recent breakthrough allows us to build an index in optimal space (i.e., O(n) bits
for a text with n characters over a constant-size alphabet), without sacrificing the
speed of pattern matching. This paper extends the work of optimal-space indexing
to a dynamic setting. In particular, we consider two well-studied problems, known
as the library management problem and the dictionary matching problem. An
introduction to these two problems are described below. Afterwards, we discuss a
basic data structure problem for maintaining a sequence of balanced parentheses,
which serves as a tool for the solution of our dictionary matching problem.

1.1 Library Management

The library management problem [McCreight 1976] is defined as follows: We need
to maintain a collection L of texts of total length n; from time to time, a text may
be inserted or deleted from L (thus changing the total length), and a pattern P may
be given and its occurrences in L are to be reported. This problem occurs naturally
in the management of homepages (e.g., Google), DNA/protein sequences [Mewes
and Heumann 1995], and many other real-life applications.

For the static case where the texts in L never change, we can concatenate all the
texts into one and then build a suffix tree [McCreight 1976; Weiner 1973] or a suffix
array [Manber and Myers 1993] for the concatenated text; the searching time for a
pattern P with length p is O(p+occ) and O(p+log n+occ), respectively, where occ is
the number of occurrences of P in L. Note that a suffix tree of a string is a compact
trie containing all suffixes of the string, while a suffix array is an array of all suffixes
of the string arranged in lexicographical order. Both indexes occupy O(n log n) bits
of storage. For indexing a huge amount of web pages or DNA/protein sequences,
this space requirement may be too demanding. For example, the suffix tree for the
human genome (totally 3G characters) takes 40G bytes of memory, while the suffix
array takes 13G bytes [Kurtz 1999].

Recently, two exciting results have been made on providing indexes occupying
only O(n) bits, yet supporting efficient pattern searching. Essentially, both of them
can be considered as another form of the suffix array, storing in a compact manner.
The first one is the compressed suffix arrays (CSA) [Grossi and Vitter 2000; 2005],
which supports pattern searching in O(p log n+occ logε n) time, for any fixed ε > 0.
The second one is the FM-index [Ferragina and Manzini 2000; 2005], with which
pattern searching can be done in O(p+occ logε n) time.1 These data structures are

1There are other variants of the CSA [Grossi et al. 2003; 2004] and FM-index [Ferragina et al.
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also sound in practice. Using CSA or FM-index, one can index the human genome
with 1.5G bytes of memory [Hon et al. 2004].

For the dynamic case where texts can be inserted into or deleted from L, if
O(n log n) bits of space is allowed, one can build a generalized suffix tree (i.e., a
single compact trie containing the suffixes of each text in L). Then, to insert or
delete a text of length t in L, we update the generalized suffix tree by adding or
removing all suffixes of the text, which can be done in O(t) time. For searching a
pattern P , the time remains O(p + occ).

To reduce space, one may attempt to ‘dynamize’ a compressed index such as
CSA or FM-index. Indeed, Ferragina and Manzini [2000] have demonstrated how
to maintain multiple FM-indexes so as to support a dynamic collection of texts.
Their solution requires O(n + m log n) bits, where m is the number of texts in the
collection. Pattern matching is slowed down slightly, using O(p log3 n + occ log n)
time. But insertion and deletion has only an amortized performance guarantee;
precisely, insertion and deletion of a text of length t take O(t log n) and O(t log2 n)
amortized time, respectively. In the worst case, a single insertion or deletion may
require re-constructing many of the FM-indexes, using Θ(n/ log2 n) time even if t
is very small.

In this paper, we introduce a compressed index for the dynamic library manage-
ment problem, whose performance is stated in the following theorem.

Theorem 1.1. Let L = {T1, T2, · · · , Tm} be a set of m distinct strings over a
constant-size alphabet Σ. Let n be the total length of all strings in L. We can
maintain L in O(n)-bit space such that inserting or deleting a text T of length t in
L takes O(t log n) time and searching for a pattern P of length p takes O(p log n +
occ log2 n) time, where occ is the number of occurrences.

Note that the time complexities of all operations are measured in the worst case
(instead of the amortized case). To our knowledge, this is the first result that
requires only O(n) bits, yet supporting both update and searching efficiently, i.e.,
in O(t logO(1) n) and O((p + occ) logO(1) n) time, respectively.

Our techniques. Technically speaking, our compressed index is based on CSA
and FM-index. Yet a few more techniques are needed to achieve the optimal
space requirement and efficient updating. Firstly, recall that the index proposed
by Ferragina and Manzini [2000] for the library management problem requires
O(n + m log n) bits. We have a simple but useful trick in organizing the texts,
which eliminates the m log n term, thus avoiding the use of a lot of space when the
collection involves a lot of very short strings. Secondly, the original representations
of CSA and FM-index do not support updates efficiently. For instance, the index
proposed by Ferragina and Manzini [2000] essentially requires re-building one or
more FM-index whenever a text is inserted. Inspired by a dynamic representation
of CSA in [Lam et al. 2002], we manage to dynamize the CSA and the FM-index to
support efficient updates to a collection of texts. With either of them, we can im-
mediately obtain an O(n)-bit index that supports updates in O(t log2 n) time. For

2004; Mäkinen and Navarro 2004], which achieve space bounds in terms of the entropy of the text.
The space can be o(n) bits for low entropy texts. However, in this paper, we will stick to the
original definitions of CSA and FM-index.
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pattern matching, using FM-index alone can achieve O(p log n + occ log2 n) time,
and using CSA alone takes O(p log2 n + occ log2 n) time.

Last but not the least, we find that FM-index and CSA can complement each
other nicely to further improve the update time. Roughly speaking, in the process
of updating such suffix-array based compressed indexes, there are two pieces of
crucial information needed. We observe that one of them can be provided quickly
by FM-index, and the other can be provided quickly by CSA. Thus, by maintaining
both CSA and FM-index together, we can perform the update more easily, so that
the update time can be improved to O(t log n).

1.2 Dictionary Matching and Compressed Suffix Trees

The dictionary matching problem is a dual problem to library management, which
is defined as follows: We need to maintain a collection D of patterns of total length
d; from time to time, a pattern may be inserted or deleted from D (thus changing
the total length), and a text T may be given such that the occurrences of all patterns
of D in T are to be reported. This problem is well-studied in the literature [Aho
and Corasick 1975; Amir and Farach 1991; Amir et al. 1992; Amir et al. 1994; Amir
et al. 1995; Sahinalp and Vishkin 1996], and an important example application is
the management of a gene bank.

The dictionary matching problem can readily be solved using O(d log d) bits
based on suffix trees, even in the dynamic case which allows insertion or deletion
of patterns in D. In particular, Amir et al. [1995] showed that insertion or deletion
of a pattern P of length p can be done in O(p log d/ log log d) time and a dictionary
matching query for a text T of length t takes O((t + occ) log d/ log log d) time.2

To solve the dictionary matching problem with a compressed index, it is natural
to ask whether we can have a compressed version of a suffix tree for a dynamic col-
lection of texts. That is, we want to support queries about the suffix tree structure
(namely, parent, child, sibling, edge label, and leaf label) and suffix links, while
allowing efficient update due to insertion and deletion of texts. Sadakane [2007]
has made a step towards this goal; his work gives an O(n)-bit representation for a
suffix tree which can avoid storing pointers, but his work assumes a static text (or
a static collection of texts); the underlying data structures are rigidly packed and
cannot be updated efficiently.

Our results. In this paper, we devise a compressed implementation of a suffix
tree for a dynamic collection of texts, based on which and adapting the work of
Amir et al. [1995], we are able to solve the dynamic dictionary matching problem
as stated in the following theorem.

Theorem 1.2. Let D = {P1, P2, . . . , Pm} be a set of m distinct patterns over a
constant-size alphabet Σ. Let d be the total length of all patterns in D. We can
maintain D in O(d)-bit space such that inserting or deleting a pattern P of length
p takes O(p log2 d) time. A dictionary matching query for a text T of length t takes
O

(
(t + occ) log2 d

)
time, where occ is the number of occurrences.

Our techniques. As mentioned, we want to extend the compressed suffix tree

2Sahinalp and Vishkin [Sahinalp and Vishkin 1996] devised a non-suffix-tree-based data structure
called fat-tree, and improved the update time to O(p), and query time to O(t + occ).
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of Sadakane [2007] to support dynamic updates. The challenge lies in two aspects:
structural and algorithmic. Structurally, our compressed suffix tree should not only
be compact, but also be flexible enough to allow efficient updates. Algorithmically,
we have to find efficient updating methods that are tailored for the underlying
data structures. This often requires supporting operations other than the basic
navigational operations for traversing the suffix tree.

In this paper, we give the first O(n)-bit representation of a suffix tree that allows
efficient updates. Our solution is comprised of several dynamic data structures for
representing CSA and FM-index, as well as the tree structure. With our solution,
retrieving an edge label and leaf label requires O(log2 n) time, while other nav-
igation queries, including suffix links, can be performed in O(log n) time. More
importantly, we allow the retrieval of backward suffix links [Weiner 1973], which
turns out to be crucial for supporting efficient updates of the representation. Ap-
parently, representing backward suffix links is more demanding than that for the
(forward) suffix links, because each internal node of a suffix tree may have more
than one backward suffix link, while some internal nodes may have none. Neverthe-
less, we are able to show that FM-index already allows us to recover the backward
suffix links efficiently.

If we maintain a suffix tree to represent a collection of texts, we can use Mc-
Creight’s method [McCreight 1976] to insert or delete a text X efficiently. In
McCreight’s insertion method, the suffix tree is updated by adding suffixes of X
one by one from the longest to the shortest one. If we try to extend this idea
of insertion to maintain our compressed suffix tree, this will create a fundamental
technical problem as both CSA and FM-index should be constructed and updated
by adding suffixes from the shortest to the longest, since CSA and FM-index are
only well-defined for representing a collection of texts and all their suffixes. This
motivates us to take an asymmetric approach to update our compressed suffix tree
with the provision of the two types of suffix links. Precisely, insertion is based on
the framework of Weiner’s suffix tree construction method [Weiner 1973], where
we start from adding the shortest suffix to the longest one, exploiting backward
suffix links. For deletion, it is based on McCreight’s method with forward suffix
links. Both can be done in O(|X| log2 n) time. Another interesting point is that
edge labels are only implicitly stored by the compact data structures, which can
be computed efficiently when needed. Furthermore, when the data structures are
updated, the correctness of the edge labels are automatically maintained.

1.3 Parentheses Maintenance

To represent a suffix tree, we need a compact representation of the tree structure.
This can be done using a sequence of balanced parentheses [Jacobson 1989; Munro
and Raman 2001]. For a sequence of n pairs of balanced parentheses, the basic
queries include find match and enclose, which find the position of the matching
parenthesis and the position of the nearest pair of enclosing parentheses, respec-
tively. For the static case, the best known solution is by Munro and Raman [2001],
which supports these operations in constant time and occupies only 2n + o(n) bits.
When we need to maintain the parentheses under insertion and deletion, the best
result is by Amir et al. [1995], which requires O(n log n) bits, while supporting
each operation, including an update, in O(log n/ log log n) time. In this paper, we
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propose the first O(n)-bit representation for maintaining the balanced parentheses,
with O(log n/ log log n) time per operation, thus matching the performance of the
best dynamic result with reduced space requirement.

As for theoretical interest, we observe that the classical problem for maintaining
a subset of items in [1, n] under updates, with rank and select queries supported,3

can be reduced to the parentheses maintenance problem. Then based on the lower
bound result of Fredman and Saks [1989], we can conclude that for any data struc-
ture for the parentheses maintenance problem, there exists a sequence of operations
requiring Ω(log n/ log log n) amortized time per operation.

Finally, we also consider a more complicated operation called double enclose,
which finds the nearest parenthesis pair that encloses two input pairs of parenthe-
ses. We show that with an O(n)-bit data structure, this operation can be done in
O(log n) time.

1.4 Organization

The remaining of the paper is organized as follows. Section 2 gives a brief review
on the suffix trees, suffix arrays, CSA and FM-index. Sections 3 is devoted to
our solution for the library management problem. In Section 4, we describe the
compressed suffix tree, and show how it can be used to solve the dictionary matching
problem. The data structure for parentheses maintenance is shown in Section 5.
We conclude the paper in Section 6.

2. PRELIMINARIES

In this section, we give a brief review on suffix trees [McCreight 1976; Weiner 1973],
suffix arrays [Manber and Myers 1993], Compressed Suffix Arrays [Grossi and Vitter
2000], and FM-index [Ferragina and Manzini 2000]. Let T [1, n] = T [1]T [2] · · ·T [n]
be a string of length n over a finite alphabet Σ. For any i = 1, . . . , n, T [i, n] is a
suffix of T .

Suffix Trees. The suffix tree for a string T is a compact trie that contains all
suffixes of T . Each edge represents some substring T [i, j] of T , called the edge label,
which is stored as the pair (i, j) for space saving. Each leaf represents some suffix
T [i, n] of T , and i is called the leaf label of the leaf. In addition, the suffix tree
contains a suffix link for each internal node, which is defined as follows. We define
the path label of a node u as the string formed by concatenating the edge labels
on the path from the root to u. Then, the suffix link of u is a pointer from u to
another node v such that the path label of v is the same as the path label of u with
the first character removed. Note that suffix link for every internal node exists and
is unique. A suffix tree can be stored in O(n log n) bits.

See Figure 1 for an example of the suffix tree for a string T = acaaccg$, where
the edge label of an edge is shown explicitly by the substring of T adjacent to the
edge, the leaf label of a leaf is shown by the integer contained in the leaf, and the
suffix link of an internal node is shown by the dashed arrow pointing outwards from
the node.

3For any given integer i, the rank query returns the number of items in the subset which is at
most i; for any given integer j, the select query finds the j-th smallest item in the subset.
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Fig. 1. Example of a suffix tree

The generalized suffix tree for a text collection is a suffix tree containing the
suffixes of all texts in the collection. Each edge is stored by three integers, specifying
which substring of which text its edge label comes from. The generalized suffix tree
can be updated efficiently to allow insertion or deletion of a text in the collection.
Precisely, insertion or deletion of a text of length t can be done in O(t) time.
Searching where a pattern P [1, p] appears in the collection is also efficient, which
can be done using O(p + occ) time, where occ denotes the number of occurrences.

Suffix Arrays, CSA and FM-index. Note that for any internal node in the
suffix tree, the edges connecting it to its children will have distinct first characters
in their edge labels. We assume that each internal node orders these edges from left
to right based on the lexicographical order of the corresponding edge label. Then,
if we traverse the leaves of the suffix tree for T from left to right and enumerate the
leaf labels along the way, we obtain the suffix array SA[1, n] of T , which is an array
of integers such that T [SA[i], n] is the lexicographically i-th smallest suffix of T . A
suffix array can be stored in O(n log n) bits.

Both the CSA and FM-index are compressed versions of the suffix array, as they
are able to retrieve any SA value in O(log n) time, but they require less amount of
storage space compared to the original suffix array. For CSA, its main component
is the function Ψ[1, n] where Ψ[i] = SA−1[SA[i] + 1]. In other words, if i is the
lexicographical order of the suffix T [SA[i], n], then Ψ[i] gives the lexicographical
order of the suffix T [SA[i] + 1, n]. We can count the number of occurrences of a
pattern P [1, p] in T using O(p log n) queries to Ψ [Grossi and Vitter 2000]. The
CSA can be stored in O(n) bits.

For FM-index, its main component is the function count , which is defined based
on the BWT array [Burrows and Wheeler 1994]. For i in [1, n], BWT[i] is the charac-

ACM Journal Name, Vol. V, No. N, Month 20YY.
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ter T [SA[i] − 1]. For each character c in Σ and i in [1, n], the function count(c, i)
computes the number of times the character c appears in BWT[1, i]. We can count
the number of occurrences of a pattern P [1, p] in T using O(p) queries to count [Fer-
ragina and Manzini 2000]. Similar to the CSA, FM-index can be stored in O(n)
bits.

See the figure below for an example of the SA, Ψ, BWT and count functions.

T = acaaccg$

i
suffixes in

SA[i] Ψ[i] BWT[i] count(“a”, i) count(“c”, i)
sorted order

1 $ 8 3 g 0 0
2 aaccg$ 3 4 c 0 1
3 acaaccg$ 1 5 $ 0 1
4 accg$ 4 6 a 1 1
5 caaccg$ 2 2 a 2 1
6 ccg$ 5 7 a 3 1
7 cg$ 6 8 c 3 2
8 g$ 7 1 c 3 3

The CSA and FM-index are closely related. In the following, we give two lemmas
that relate the Ψ function of CSA and the count function of FM-index.

Firstly, observe that suffixes beginning with the same character correspond to
a consecutive region in SA. For example, in the above figure, SA[2, 4] and SA[5, 7]
correspond to suffixes beginning with “a” and “c”, respectively. The above regions
can be calculated as follows: For each character c, let α(c) be the number of suffixes
beginning with a character less than c, and let #(c) be the number of suffixes that
begin with c. Then, [α(c) + 1, α(c) + #(c)] is the region in SA that corresponds to
suffixes beginning with c.

We will store all #(c) values explicitly, so that #(c) for any c can be retrieved
in constant time. Then, α(c) for any c in Σ and T [SA[i]] for any i in [1, n] can be
computed in constant time, and we have the following lemmas.

Lemma 2.1. For any c in Σ and any i in [1, n], we can compute count(c, i) using
O(log n) queries to Ψ.

Proof. Observe that T [SA[j]] = c if and only if BWT[Ψ[j]] = c. This implies that
count(c, i) is the number of j satisfying T [SA[j]] = c and Ψ[j] ≤ i.

However, for T [SA[j]] = c, j must be in the region [α(c) + 1, α(c) + #(c)]. Thus,
count(c, i) is equal to the number of j in [α(c) + 1, α(c) + #(c)] satisfying Ψ[j] ≤ i.

As shown in [Grossi and Vitter 2000; Sadakane 2000], Ψ[α(c) + 1, α(c) + #(c)] is
an increasing sequence for any c. Thus, count(c, i) can be found by a binary search
on Ψ[α(c) + 1, α(c) + #(c)], using O(log n) queries to Ψ.

Lemma 2.2. For any i in [1, n], we can compute Ψ[i] using O(log n) queries to
the count function.

Proof. Let c = T [SA[i]] and y = i − α(c). Both c and y can be computed in
constant time based on the stored #(c) values. Now, suppose that the following
claim is correct: BWT[Ψ[i]] is the y-th c in the BWT array. Then, Ψ[i] is the smallest
k such that count(c, k) = y. As count(c, ·) is monotonic increasing, that the value
of k (and thus Ψ[i]) can be found based on binary search, using O(log n) queries to
the count function.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Compressed Indexes for Dynamic Text Collections · 9

To prove the claim, we first show that BWT[Ψ[i]] = c. This is true since BWT[Ψ[i]] =
T [SA[i]]. Next, we observe that for each j in [1, Ψ[i]] with BWT[j] = c, the suffix
cT [SA[j], n] is a distinct suffix of T that begins with c and lexicographically smaller
than or equal to T [SA[i], n]. In other words, if r denotes the rank of the suffix
T [SA[i], n] among all suffixes of T that begin with c, BWT[Ψ[i]] is the r-th c in BWT.

Clearly, r = i− α(c) = y. This completes the proof of the claim, and the lemma
follows.

To conclude this section, we state a lemma to demonstrate the searching ability
provided by the count function.

Lemma 2.3 [Ferragina and Manzini 2000]. Let P be any pattern and let c
be any character in Σ. Denote the lexicographical order of P among all suffixes of T
(i.e., 1 + the number of such suffixes less than P ) as i. Then, count(c, i−1)+α(c)+1
is the lexicographical order of cP among all suffixes of T .

We refer to an execution of the above lemma a backward search step. Applying
the backward search steps repeatedly, we can find the number of occurrences of any
pattern P [1, p] in T , using O(p) queries to the count function. Such a searching
method is known as the backward search algorithm in the literature.

3. COMPRESSED INDEX FOR DYNAMIC LIBRARY MANAGEMENT

This section is devoted to proving Theorem 1.1, where we show an O(n)-bit index
for maintaining a collection L of texts of total length n, with characters drawn from
a constant-size alphabet Σ; the index supports inserting or deleting a text of length t
in O(t log n) time, and searching for a pattern P [1, p] in O(p log n+occ log2 n) time.

Our compressed index consists of three data structures, namely, COUNT , MARK ,
and PSI , that correspond to the dynamic representations of the count functions of
FM-index, the auxiliary data structure to retrieve SA values, and the Ψ function of
CSA, respectively.

We first introduce COUNT , which is the core data structure that already sup-
ports counting the occurrences of a pattern P in L efficiently, and fast insertion or
deletion of texts. Afterwards, we discuss how to exploit MARK and PSI to support
efficient enumeration of the positions where a pattern P occurs, and further speed
up the updating process.

Consider a set of texts L = {T1, T2, . . . , Tm} over a constant-size alphabet Σ. We
assume that the texts are distinct, and each text T starts with a special character
$ in Σ, where $ is alphabetically smaller than all other characters in Σ and it does
not appear in any other part of a text.

Denote the total length of all texts as n. In case the contents of the text collection
is changed, we always label the existing texts in L in such a way that Tj refers to
the lexicographically rank-j text currently in L.

Conceptually, we want to construct a suffix array SA for the texts by listing out
all suffixes of all texts in lexicographical order. For i in [1, n],

SA[i] = (j, k)

if the suffix Tj [k, |Tj |] is the rank-i suffix among all suffixes of all texts. To insert
a text T to L, we insert all suffixes of T into the SA. Similarly, to delete a text

ACM Journal Name, Vol. V, No. N, Month 20YY.
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from L, we delete all suffixes of T from SA. Searching for a pattern P is done by
determining the interval [x, y] such that each suffix corresponding to SA[x] up to
SA[y] has P as a prefix. In other words, SA[x], SA[x + 1], . . . , SA[y] are the starting
positions of all locations where P occurs in L.

3.1 The COUNT Data Structure

Due to the space restriction, we cannot directly store the SA table. Instead, we use
the FM-index, which requires only O(n) bits, to represent the SA table implicitly.
The FM-index for L consists of the function count(c, i) for each c in Σ, which
returns the number of occurrences of character c in BWT[1, i], where BWT[i] is defined
as the character Tj [k − 1] if SA[i] = (j, k).4 Note that this definition is analogous
to the original definition of FM-index for a single text, so that we refer the above
BWT array as the Burrows-Wheeler transformation of L.

We implement the count(c, i) function with a dynamic data structure COUNT ,
whose performance is summarized in the lemma below.

Lemma 3.1. We can maintain the COUNT data structure using O(n) bits space
such that each of the following operations is supported in O(log n) time.

—Report(c, i): Returns the value of count(c, i).
—Insert(c, i): Updates all count functions due to a character c inserted to the

position i of BWT.
—Delete(i): Updates all count functions due to a character deleted from the posi-

tion i of BWT.

Proof. To implement COUNT , we store |Σ| lists of bits, denoted as COUNTc

for each c in Σ. Each list is n-bit long, with COUNTc [i] = 1 if BWT[i] = c and
COUNTc [i] = 0 otherwise. To support updates easily, for each list COUNTc , we
partition it into segments of log n bits to 2 log n bits. The segments are stored in
the nodes in a red-black tree, so that a left to right traversal of the tree gives the
list COUNTc . Precisely, each node u in the tree contains the following fields.

—A color bit (red or black), a pointer to parent, a pointer to the left child and a
pointer to the right child.

—A segment of bits, with length log n to 2 log n.
—An integer size indicating the total number of bits contained in the subtree rooted

at u.
—An integer sum indicating the total number of 1’s contained in the subtree rooted

at u.

To support the function count(c, i), we use the size value in each node to traverse
the tree of COUNTc and locate the node u that contains the bit COUNTc [i]. We
record the number of 1’s in the segment of u up to this bit,5 and also the sum in
the left child of u. Then, we traverse from u to the root. For every left parent v
on the path, we record the number of 1’s in the segment of v and also the sum in

4Precisely, the index k − 1 in Tj [k − 1] is defined under modulo-|Tj | arithmetic.
5This can be done in constant time in RAM with a universal decoding table of o(n) bits [Jacobson
1989].
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the left child of v. Summing up all these recorded values, we obtain the number of
1’s in the list of COUNTc up to the bit COUNTc [i], which equals count(c, i). The
whole process takes O(log n) time.

To update the COUNT data structure when a character c is inserted to position i
of BWT, we insert a bit 1 to position i of COUNTc and insert a bit 0 to position i of
COUNTc′ for each c′ 6= c. The time required is O(log n). Deletion of a character
from BWT can be done in the opposite way in O(log n) time.

For the space requirement, we note that each node takes O(log n) bits and there
are O(n/ log n) nodes. Thus, the space requirement is O(n) bits. This completes
the proof of the lemma.

Note that COUNT allows efficient update which is needed when the BWT array
is changed due to insertion or deletion of texts. Our implementation is different
from the original one in [Ferragina and Manzini 2000], where the count functions
are stored in a data structure which is difficult to update (but allows constant-time
query).

Pattern matching. Similar to the case of a single text, we define #(c) for each
character c to be the number of suffixes whose first character is c, and maintain
these values explicitly to allow constant-time retrieval. Then, α(c) or T [SA[i]] can
be computed in constant time. Together with the COUNT data structure, we
can support counting the occurrences of P [1, p] in L in O(p log n) time, using the
backward search algorithm as follows: Firstly, the rank of P [p] among all suffixes
can be computed in constant time by 1 + α(P [p]). Then, by Lemma 2.3, we can
find the rank of P [p− 1, p] using one query to the count functions. The process is
repeated, so that eventually we can find the rank (say, x) of P [1, p]. Similarly, we
can find the rank (say, y) of P [1, p]z, where z is assumed to be an arbitrary string
of rank n + 1 among all suffixes. Then, the number of occurrences of P is y − x.
As the whole process requires O(p) queries to the count functions and each query
takes O(log n) time, the total time follows.

Text insertion. To insert a text T [1, t], we conceptually insert all suffixes of T to
SA, starting from the shortest one. The rank of T [t] among the suffixes stored in SA,
denoted as i, is 1 + α(T [t]). Conceptually, we want to insert T [t] to the i-th entry
in SA. However, as the SA table is not stored explicitly, we reflect the change in SA
by the corresponding change in BWT instead, where we insert the character T [t− 1]
to the i-th position of the BWT array. This is done by performing Insert(T [t− 1], i)
provided by COUNT . Next, to insert (conceptually) the suffix T [t−1, t] to SA, let i′

be the rank of T [t−1, t] among the suffixes stored in the updated SA, which is found
by one backward search step in the updated COUNT data structure. The required
change in SA is reflected by inserting T [t − 2] to the i′-th position of BWT. The
process continues until the longest suffix T [1, t] is inserted to SA, which is reflected
by inserting T [t] to BWT. The whole process takes O(t log n) time.

Text deletion. Deleting a text T [1, t] from the collection of texts is more trou-
blesome because among all those single-character suffixes that equals to T [t], we
do not know which one belongs to T .6 To handle the problem, we first perform
a backward search for T [1, t] and let [x, y] be the interval such that for any i in

6We assume that the suffixes of all texts in L each has a distinct rank, even if they are the same
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[x, y], T [1, t] is a prefix of the suffix corresponding to SA[i]. Recall that all texts
in the collection are distinct and each of them starts with a special character $
which is alphabetically smaller than all other characters. Thus, we can conclude
that SA[x] corresponds to the text T [1, t] to be deleted because no other text can
be lexicographically less than T [1, t] and have T [1, t] as a prefix.

Then, performing Delete(x) provided by COUNT , we can (conceptually) delete
the suffix T [1, t] and update the SA accordingly. Afterwards, we repeat the process
to delete the remaining suffixes T [i, t] for i = 2, 3, . . . , t, i.e., from the longest one
to the shortest one. This is done by first computing the rank x′ of T [i, t] among
the suffixes stored in the updated SA, and then performing Delete(x′).

Note that if the Ψ function of CSA is given,7 we can compute the rank of T [i, t]
easily from the rank of T [i− 1, t]. However, as the Ψ function is not available, we
need to simulate each query to Ψ by O(log n) queries to the count functions. Since
a query to count takes O(log n) time, deleting each suffix of T [1, t] takes O(log2 n)
time, and the whole process takes O(t log2 n) time.

Summarizing the discussion, we have the following theorem.

Theorem 3.2. Let L = {T1, T2, · · · , Tm} be a set of m distinct strings over
a constant-size alphabet Σ. Let n be the total length of all strings in L. We can
maintain L in O(n)-bit space such that counting the occurrences of a pattern P [1, p]
takes O(p log n) time, inserting a text T [1, t] in L takes O(t log n) time, and deleting
a text T [1, t] from L takes O(t log2 n) time.

3.2 The MARK Data Structure

The COUNT data structure in the previous discussion does not support retrieving
SA[x] and thus cannot report the positions where a pattern occurs. In the following,
we give an additional data structure called MARK for the retrieval of SA values.

Recall that all texts in L start with the character $ which is lexicographically
smaller than any other character in Σ. As a result, for the set of m texts in L, the
first m entries of SA corresponds to these m texts sorted in lexicographical order.

Consider the entries SA[i] = (j, k) where k is a positive integral multiple of log n.
There are at most n/ log n such entries and our MARK data structure stores a
tuple (i, (j, k)) for each of them. Now, suppose that given a certain x, we want
to find the value (j, k) with SA[x] = (j, k). We first check whether SA[x] is stored
in MARK . If so, we obtain the desired value immediately. Otherwise, we check
whether x ≤ m, which would imply that SA[x] is the suffix Tx[1..|Tx|]. If both cases
are false, we can determine the rank of the suffix Tj [k−1, |Tj |], denoted as x′, using
backward search with the COUNT data structure. We check whether the entry
SA[x′] is stored in MARK or x′ ≤ m. The process continues and after at most log n
steps, we must either meet a suffix Tj [k − r, |Tj |] such that k − r is a multiple of
log n, or k − r = 1. In both cases, the value of (j, k) can be found accordingly.

As to be shown in Lemma 3.3, for any value x, MARK determines whether the

in appearance. As can be seen from the above discussion, the relative rank among equal suffixes
is fixed according to the order of insertion.
7If SA[i] = (j, k), then Ψ[i] is the rank of Tj [k +1, |Tj |] among the suffixes of all texts, where k +1
is computed under modulo-|Tj | arithmetic.
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tuple SA[x] is stored (and if so, reports its value) in O(log n) time. Thus, it takes
O(log2 n) time to find the value of SA[x] for any value x.

When a suffix is inserted to or deleted from SA, some of the originally stored
tuples may require updates. For example, when a new suffix with rank u among
the existing suffixes is inserted, a tuple (j, k), corresponding to SA[v] originally,
becomes the a tuple corresponding to SA[v + 1] if v ≥ u. That is, we may need to
update the i-value of a stored tuple whenever a suffix is inserted or deleted from
SA. Also, the rank of an original text Tj in L may change due to text insertion or
deletion, so that we may need to update the j-value of a stored tuple.

Bearing the above concern in mind, MARK must allow a set of operations for
handling the updates carefully. We summarize the performance of MARK in the
lemma below. Note that MARK stores at most n/log n entries of SA, and the i-
value of the stored tuples are distinct. The actual construction of MARK is very
similar to that of COUNT , and we defer the proof in the Appendix A for interested
readers.

Lemma 3.3. Consider the entries SA[i] = (j, k) where k is a positive integral
multiple of log n. We can maintain a data structure MARK in O(n) bits for stor-
ing the tuples (i, (j, k)) for each of these entries, such that each of the following
operations is supported in O(log n) time.

—Report(i): Returns
(
i, (j, k)

)
if this tuple is stored. Else, return false.

—Insert(i, j, k): Inserts the tuple
(
i, (j, k)

)
to MARK.

—Delete(i): Deletes the tuple
(
i, (j, k)

)
from MARK.

—Increment lexico(`): For each tuple stored, the j-value is incremented by one if
the original j value is at least `. This function allows us to update the rank of
the original texts after a new text with lexicographical order ` is inserted.

—Decrement lexico(`): For each tuple stored, the j-value is decremented by one if
the original j value is greater than `.

—Shift up(`): For each tuple stored, the i-value is incremented by one if the original
i-value is at least `. This function allows us to update the correspondence between
tuples and SA after a new suffix is inserted to position ` of SA.

—Shift down(`): For each tuple stored, the i-value is decremented by one if the
original i-value is greater than `.

With COUNT and MARK , we can find the positions where a pattern P [1, p]
occurs in the collection of texts in O(p log n + occ log2 n) time.

3.3 The PSI Data Structure

Recall that to delete a text T [1, t] in COUNT , we first determine the location of
T [1, t] in SA. Then, we delete all the suffixes of T starting from the longest one.
The bottleneck for the deletion operation is determining the rank of T [i, t] after the
deletion of the suffix T [i− 1, t]. We observe that CSA provides a good solution for
it. In fact, the Ψ function of CSA stores exactly the information we need.

However, we cannot use the original implementation of Ψ as we need to update
Ψ efficiently. We dynamize Ψ with the data structure PSI whose performance is
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summarized in the lemma below. The proof of the lemma is presented in Appen-
dix B.

Recall that Ψ is a list of n integers such that if SA[i] = (j, k), then Ψ[i] is the
rank of Tj [k+1, |Tj |] among the suffixes of all texts (where k+1 is computed under
modulo-|Tj | arithmetic).

Lemma 3.4. We can maintain the PSI data structure in O(n) bits such that
each of the following operations can be done in O(log n) time.

—Report(i): Returns Ψ[i].
—Insert(i, x): Inserts the integer x to position i of the list. This function is needed

when we insert a suffix to SA.
—Delete(i): Deletes the integer from position i of the list.
—Shift up(`): Each integer in the list with value at least ` is incremented by 1.

This function is needed when we insert a suffix to position ` of SA.
—Shift down(`): Each integer in the list with value greater than ` is decremented

by 1.

With the PSI data structure, insertion and deletion of a text of length t can both
be improved to O(t log n) time.

3.4 All in a Nutshell

We summarize how the search, insert and delete operations are performed with
COUNT , MARK , and PSI .

Searching for a pattern P [1, p]. We perform backward search to determine the
interval [x, y] such that for each i in [x, y], SA[i] corresponds to an occurrence of P .
This can be done in O(p log n) time using the COUNT data structure. Then, for
each i in [x, y], the value of SA[i] is obtained by at most log n backward search steps,
with one query to MARK in each step. Thus, the time is O(p log n + occ log2 n).

Inserting a text T [1, t]. Intuitively, we insert each suffix of T to SA starting from
the shortest one. For x = t, t − 1, . . . , 1, we first determine the rank (say, r) of
T [x, t] among the existing suffixes. Then, to simulate the effect of inserting T [x, t]
into position r of SA, we update COUNT by inserting T [x − 1] to the position r
of BWT. Then, we update PSI by incrementing all integers in the stored list whose
value at least r, insert the rank of T [x + 1, t] to position r of PSI , and increment
#(T [x]) by one.

The MARK data structure is updated as follows. We first determine the rank r′

of T among all texts in L using backward search algorithm. This takes O(t log n)
time. Then, we update the j-value of all tuples in MARK such that for each tuple
with j-value at least r′, we increment its j-value by one. Then, when each suffix
of T is inserted to SA (whose rank is r among all existing suffixes), we increment
the i-value for any tuples in MARK whose i-value is at least r. Finally, we insert
tuples corresponding to T to MARK . The total time required is O(t log n).

Deleting a text T [1, t]. Intuitively, we delete each suffix of T starting from
the longest one. We first determine the rank of T among all suffixes of all texts.
Afterwards, the rank of the other suffixes of T can be found using the PSI . Updating
of #(c), COUNT , MARK , and PSI are done similarly to that of inserting a text,
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except that we are decrementing the values this time. The total time required is
O(t log n) as well.

Adjustment due to huge updates. Note that in the above discussion, our
data structures require the value of dlog ne as a parameter, and we have assumed
that this value is fixed over the time. This is not true in general as texts are
inserted or deleted in the collection. Thus, when the value of dlog ne changes, our
data structures should be changed basing on a different parameter. A simple way
to handle this is to reconstruct everything when necessary, but this would imply
huge update time, say, O(n) time, on the single update operation that induces the
change. To avoid this, we can use the standard technique for global rebuilding [?],
where we maintain three copies for each data structure, one based on the current
parameter x, and the other two partially constructed based on the parameters x−1
and x + 1, respectively, and distribute the reconstruction process over each update
operation. In this way, we can bound the update time to be O(t log n), while having
a new data structure ready when dlog ne is changed.

Summarizing the above discussion, we complete the proof of Theorem 1.1. In
addition, we obtain the following lemma, which will be used in Section 4 when
the dynamic CSA and FM-index serve as building blocks for indexing our dynamic
dictionary.

Lemma 3.5. Let L = {T1, T2, . . . , Tm} be a set of m distinct strings over a
constant-size alphabet Σ. Let n be the total length of all strings in L. We can
maintain CSA and FM-index for L in O(n)-bit space such that inserting or delet-
ing a text T [1, t] in L takes O(t log n) time. Precisely, the updating is done by
t steps, each taking O(log n) time. For insertion, the i-th step produces the in-
dex for L ∪ {T [t − i + 1, t]}; for deletion, the i-th step produces the index for
(L − {T}) ∪ {T [i + 1, t]}.

4. COMPRESSED INDEX FOR DYNAMIC DICTIONARY MATCHING

This section is devoted to proving Theorem 1.2, where we show an index of O(d)
bits that maintains a collection D of patterns of total length d, with characters
drawn from a constant-size alphabet Σ. In addition, the index supports inserting
or deleting a pattern of length p in O(p log2 d) time, and a dictionary matching query
that searches for all patterns in an arbitrary given text T [1, t] can be performed in
O

(
(t + occ) log2 d

)
time.

In the first part, we describe the a data structure called the Compressed Suffix
Tree for a dynamic collection of texts, which is of independent interests. Then,
in the second part, we describe how to combine the Compressed Suffix Tree and
the parentheses maintenance problem of Section 5 to solve our Dynamic Dictionary
Matching problem.

4.1 Compressed Suffix Trees

Firstly, we describe an O(n)-bit representation of a suffix tree for a dynamic col-
lection of texts. We call such a representation a compressed suffix tree. Our main
result is stated in the following theorem.

Theorem 4.1. Let L = {T1, T2, . . . , Tm} be a collection of texts over a constant-
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size alphabet Σ. Let n be the total length of all texts in L. We can maintain a
compressed suffix tree for L, which uses O(n)-bit space and supports the following
queries about the suffix tree for L: Finding the root can be done in constant time,
and finding the parent, left child, left sibling, right sibling, and suffix link of a
node can be done in O(log n) time. The edge label and leaf label can be computed in
O(log2 n) time. Inserting or deleting of a text T [1, t] in L can be done in O(t log2 n)
time.

Roughly speaking, information about the suffix tree are stored in the following
data structures.

(1) The tree structure is stored by a list of balanced parentheses.
(2) Suffix links and leaf labels are stored by CSA and FM-index.
(3) Edge labels are deduced from the leaf labels and the lengths of the longest

common prefix between any two adjacent leaves, where the lengths are stored
by a data structure called LCP.

When a text is inserted into or deleted from L, one naive way to update the
compressed suffix tree is to decompress it back to the original suffix tree, perform
update on the uncompressed suffix tree, and then compress it back to the above
data structures. Yet, such approach is very time consuming and requires O(n log n)-
bit working space. We show that we can update the compressed suffix tree by
working on the data structures directly in the compressed format. Intuitively, our
compressed suffix tree supports the navigation operations of the a normal suffix
tree. Thus, we can simulate an updating algorithm for a normal suffix tree, in
order to determine how an update changes the suffix tree. The underlying data
structures of the compressed suffix tree are then changed accordingly.

In the following, we give details on how the information of the suffix tree are
stored by the data structures we mentioned. Then, we show how the changes in the
suffix tree due to insertion or deletion of a text is converted into actual modifications
of the data structures. Finally, we show how to implement the data structures to
support the required modifications efficiently.

4.1.1 Tree Structure and Navigation Operations. The tree structure of a suffix
tree is represented by a list of parentheses which is defined as follows: Traverse the
suffix tree in a depth-first-search order; at the first time a node is visited, append
a “(” to the list, and at the last time a node is visited, append a “)” to the list.
Note that the list of parentheses is balanced and each node in the suffix tree is
represented by a pair of matching parentheses. Therefore, we can specify a node
u in the suffix tree using the position of the open parenthesis that represents u.
To support efficient navigation operations on the suffix tree, we require efficient
operations on the balanced parentheses, as shown in the next lemma, where the
proof of which is deferred to Section 5.

Lemma 4.2. We can maintain a list B of n pairs of balanced parentheses in
O(n)-bit space such that each of the following operations is supported in O(log n)
time.

—find match(u): Finds the matching parenthesis of u.
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—enclose(u): Finds the nearest pair of matching parentheses that encloses u.
—double enclose(u, v): Finds the nearest pair of matching parentheses that encloses

both u and v.
—rank leaf (u), select leaf (i): A pair of consecutive matching parentheses is called

a leaf in B. The operation rank leaf (u) counts the number of leaves from the
beginning of B up to location of u. The operation select leaf (i) finds the i-th leaf
in B.

—insert(`, r), delete(`, r): Inserts or deletes the matching parentheses pair located
at (`, r).

For a node u, its parent is given by enclose(u), the left child is u + 1, the left
sibling is find match(u− 1), and the right sibling is find match(u) + 1.

Lowest common ancestor, leaf rank and selection. The list of balanced
parentheses supports other queries about the suffix tree. In particular, the lowest
common ancestor of two nodes u and v is double enclose(u, v). The rank of a leaf u,
which is the lexicographical order of the suffix corresponding to it, is rank leaf (u).
The i-th leaf, which is the one corresponding to the lexicographically i-th suffix,
is given by select leaf (i). The leftmost leaf and the rightmost leaf of the subtree
rooted at u can be found by rank leaf (u − 1) + 1 and rank leaf (find match(u)),
respectively. Each of the above operations takes O(log n) time.

Leaf labels and suffix links are deduced from the tree structure, CSA, and FM-
index as follows. Let tSA denote the time to retrieve SA[i] for a given integer i, which
is O(log2 n) time using our dynamic version of FM-index.

Leaf labels. For any leaf u, let i = rank leaf (u) be its rank. The suffix corre-
sponding to u has lexicographical order i among all suffixes in the suffix tree. Thus,
the leaf label of u is SA[i], which can be found using the FM-index. Finding i and
SA[i] takes totally O(log n + tSA) time.

Suffix links. Consider an internal node u. Let u` and ur be the leftmost leaf and
rightmost leaf in the subtree rooted at u, respectively. Let x and y be the leaf rank
of u` and ur. Then, Ψ[x] gives the rank of a leaf whose path label is that of u`

with the first character removed. Similarly, Ψ[y] gives the rank of a leaf whose path
label is that of ur with the first character removed. Let v be the lowest common
ancestor of select leaf (Ψ[x]) and select leaf (Ψ[y]). We notice that the path label
of v is that of u with the first character removed. Thus, v is the node pointed by
the suffix link of u. The above steps takes O(log n) time.

Finally, we describe an auxiliary data structure called LCP for computing the
edge labels.

Edge labels. For any node u, the edge label of the edge between u and its
parent can be represented by a tuple (j, s, `) such that Tj [s, s + `− 1] is the string
on the edge. To compute the edge labels, we adapt Sadakane’s static LCP data
structure [Sadakane 2002], which stores the length of the longest common prefix
between any two adjacent leaves in a fixed suffix tree, into a dynamic LCP data
structure that allows updates in the suffix tree. The idea is to use a red-black tree
instead of a fixed array in the original paper. Based on this dynamic structure, the
value LCP(i), which is the length of the longest common prefix between the i-th
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leaf and the (i + 1)-th leaf, can be retrieved in O(log n) time. When we insert a
new suffix to become the i-th leaf of the suffix tree, we only need to find the length
of the longest common prefix between the leaf corresponding to this suffix and its
two adjacent leaves (i.e., the leaves corresponding to the original (i−1)-th and i-th
smallest suffix), and then we can update the LCP in O(log n) time to reflect the
insertion of this suffix. On the other hand, when we delete the i-th smallest suffix,
we only need to find the length of the longest common prefix between the original
(i − 1)-th and (i + 1)-th smallest suffix, and then we can perform the update in
O(log n) time.

Based on the LCP, we can find the path label of a node u in O(log n + tSA) time
as follows. If u is a leaf, then the path label of u is determined immediately by its
leaf label. Otherwise, we find the rightmost leaf x rooted at u’s leftmost child, and
compute its rank i. We notice that the path label of u is the longest common prefix
between x and the leaf with rank i + 1, and its length is given by LCP(i). Thus,
with the leaf label of x and LCP(i), we can deduce the path label of u. Finally,
to find the edge label of u, we find the path label of u and the path label of u’s
parent, and then the edge label of u can be calculated accordingly. The process
takes O(log n + tSA) time.

4.1.2 Inserting and Deleting a Text. Assume that we have the list of balanced
parentheses, CSA, FM-index and LCP representing the suffix tree for a collection of
texts L. To insert a new text T [1, t] into L, we update the data structures to reflect
the change that all suffixes of T are inserted into the suffix tree. We perform the
update in t rounds such that in the i-th round, the i-th shortest suffix T [t− i+1, t]
is inserted as a new leaf into the suffix tree. Each round involves updating the list of
balanced parentheses, CSA, FM-index and LCP. Thus, we maintain an invariance
that at the end of the i-th round, the data structures represent the compressed
suffix tree for the collection L ∪ {T [t− i + 1, t]}.

In each round, updating CSA and FM-index can be done according to Lemma 3.5.
The key concern is updating the list of balanced parentheses and LCP, which is
done by the following two steps: Calculating the new suffix tree information, and
updating the data structures according to the new suffix tree.

For the first step, we observe that our compressed suffix tree supports the naviga-
tion operations on normal suffix tree, so that we can make use of Weiner’s algorithm
to calculate the location of the new leaf. However, Weiner’s algorithm involves the
following notion of backward suffix links.

Definition 4.3. Consider a suffix tree for a collection of texts. For any internal
node u and any character c, the backward suffix link of u with respect to c is
a pointer to the internal node v such that the path label of v is the character c
concatenated with the path label of u. The backward suffix link is null if no such
v exists.

Note that if the backward suffix link of u with respect to a character c points to a
node v, then the suffix link of v points to u. Unlike the original Weiner’s algorithm,
we cannot store the backward suffix links for each internal node explicitly, because
it would take O(n log n) bits. Instead, we will show how to calculate it using our
O(n)-bit data structures in O(log n) time.
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Yet, for our suffix tree representation, we also need to know the longest common
prefix between the newly added leaf and its two adjacent leaves in order to update
the LCP. We show that these lengths can be calculated efficiently from the old LCP.
After the information about the new suffix tree is obtained, we can proceed to the
second step to update the data structures accordingly.

Suppose that we are in the (i + 1)-th round of an update. That is, the suffix
S = T [t−i+1, t] is just inserted into the suffix tree in the last round. Let c = T [t−i]
and we want to insert the suffix cS into the suffix tree. The two steps go as follows.

Calculating the new suffix tree information. To calculate information about
the new suffix tree, we need the use of backward suffix links. We first show how to
calculate the backward suffix link of a node efficiently.

Let FM (i, c) denote the function that computes the lexicographical order of cP
among all suffixes of texts in L, given that i is the lexicographical order of P
among all suffixes of texts in L. Note that FM (i, c) can be done in O(log n) time
by Lemma 2.3 and Lemma 3.5.

Lemma 4.4. Consider a compressed suffix tree for a collection of texts L =
{T1, T2, · · · , Tm} with total length n. For any internal node u and character c,
the backward suffix link of u with respect to c can be found in O(log n) time.

Proof. We first assume that the backward suffix link of u with respect to c
exists. That is, there is an internal node v with path label cS, where S is the path
label of u. Let u` and ur be the leftmost and rightmost leaf of u, respectively. Let
v` and vr be the leftmost and rightmost leaf of v. For any internal node p and any
leaf q in the subtree rooted at p, we let E(p, q) be the concatenation of edge labels
from p to q.

By the definition of a suffix tree, there is a leaf w in the subtree rooted at
u such that E(u,w) equals E(v, v`). As u` is the leftmost leaf in the subtree
rooted at u, E(u, u`) is lexicographically smaller than or equal to E(v, v`). Then,
FM (rank leaf (u`), c) is the leaf rank of v`.

Similarly, E(u, ur) is lexicographically equal to or greater than E(v, vr). If
E(u, ur) is equal to E(v, vr), FM (rank leaf (ur), c) is the leaf rank of vr; other-
wise, FM (rank leaf (ur), c) − 1 is the leaf rank of vr. To determine which case is
the correct one, we find the FM (rank leaf (u`), c)-th and the FM (rank leaf (ur), c)-
th leaf, and find their lowest common ancestor v′. If the suffix link of v′ points to
u, then the backward suffix link of u with respect to c is v′. We repeat the test
using the (FM (rank leaf (ur), c)− 1)-th leaf instead of the FM (rank leaf (ur), c)-th
leaf. If both cases fail, we conclude that the backward suffix link of u with respect
to c is null. The above steps take O(log n) time.

The first piece of information we want to compute is the location of the leaf
corresponding to cS. We follow Weiner’s algorithm to determine where the leaf
should be added. Let w be the leaf for the suffix S, whose location is known by the
end of last round. We start at w, traverse up the tree and look for the first node u
with a non-null backward suffix link with respect to c.

If such a node u is found, we follow the backward suffix link to a node v. Let c′

be the first character on the path from u to w. If there is no edge out of v with
first character being c′, then the leaf for cS is attached as a child of v. Otherwise,
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we let (v, v′) be an edge going out of v with first character being c′. The leaf for
the suffix cS should be attached to a new internal node on this edge.

If no such node u is found when we traverse from w up to the root, the leaf for
the suffix cS is attached to the root or to a new internal node on an edge out of
the root.

The above steps calculate the location of the new leaf in O(ei+1 log n+ tSA) time,
where ei+1 ≥ 1 is the number of edges traversed when we go up from the leaf w
searching for the node u. The term tSA is needed because when we arrive at the
node v or arrive at the root, we need to find the first character of each outgoing
edge, which requires finding the edge labels.

The second piece of information concerns the updates for the LCP data structure.
Recall that the suffix S = T [t − i + 1, t] is inserted to the suffix tree in the last
round, and we want to insert the suffix cS into the tree, where c = T [t − i]. We
show how to calculate the longest common prefix between the leaf corresponding
to cS and its two adjacent leaves efficiently.

Let x be the lexicographical order of S among all suffixes in the suffix tree, which
is known by the end of last round. Let j = FM(x, c), which is the lexicographical
order of cS among all suffixes in the suffix tree. Then, the leaf representing cS will
be inserted as the j-th leaf in the suffix tree. The length of the longest common
prefix between cS and the suffix corresponding to the (j−1)-th leaf can be calculated
as follows.

Lemma 4.5. The length of the longest common prefix between cS and the suffix
corresponding to the (j − 1)-th leaf can be found in O(log n + tSA) time.

Proof. Let c′S′ be the suffix corresponding to the (j − 1)-th leaf, where c′ is a
character and S′ is a string. If c 6= c′, the longest common prefix of cS and c′S′ has
length zero. Otherwise, we notice that the Ψ[j−1]-th leaf is the leaf corresponding
to the suffix S′. Thus, the length of the longest common prefix between cS and
c′S′ is 1 + the longest common prefix between S and S′, where S and S′ are the
suffixes corresponding to the x-th and Ψ[j − 1]-th leaf, respectively. We find the
lowest common ancestor of the x-th and the Ψ[j − 1]-th leaf. The length of the
path label for the lowest common ancestor gives the length of the longest common
prefix. The above steps take O(log n + tSA) time, which is dominated by the time
to find the path label.

Calculating the length of the longest common prefix between cS and the suffix
corresponding to the j-th leaf is identical.

Updating the data structures. After the information about new suffix tree is
known, we update the data structures to actually reflect the change that the suffix
cS is inserted into the suffix tree. CSA and FM-index can be updated in O(log n)
time by Lemma 3.5. It remains to update the list of balanced parentheses and LCP.

Recall that the list of balanced parentheses represents the tree structure of the
suffix tree. The previous calculation finds where the leaf corresponding to the
suffix cS is attached to the suffix tree, so the list of parentheses can be updated
accordingly. There are two cases where the new leaf is inserted. If the leaf is
attached as the x-th child of an existing node u, we insert a pair of consecutive
matching parentheses, such that it is enclosed by the parentheses representing u,
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and its location represents the x-th child of u. Otherwise, the leaf is attached to
a newly created internal node w on some existing edge. Let (u, v) be the edge
where u is the parent of v. We insert a pair of parentheses representing w, which is
inside u and immediately enclosing v. We also insert a pair of consecutive matching
parentheses within w. The above steps takes O(log n) time.

Finally, we update LCP according to the calculated values of the longest common
prefix. Recall that LCP(j) is the length of longest common prefix between the j-th
leaf and the (j + 1)-th leaf. Assume that cS is inserted as j-leaf of the suffix tree,
we need to change the value of LCP (j − 1) to the length of the longest common
prefix between cS and the originally (j − 1)-th leaf. Also, we need to insert a new
value as LCP(j), which is the length of the longest common prefix between cS and
the originally j-th leaf. It takes O(log n) time to update the LCP.

Overall time complexity. Consider the i-th round where we are inserting the i-th
shortest suffix of T into the suffix tree. We calculate the new suffix tree information
in O(ei log n + tSA) time, where ei ≥ 1 is the number of edges traversed when we
calculate the locations to insert the new leaf. Then we perform the changes on
the data structures in O(log n) time. Note that it takes more time to calculate
how the data structures are changed, than actually perform the change. The total
time to insert a text T is O

(∑t
i=1 ei log n + t · tSA

)
. Similar to the analysis of the

Weiner’s algorithm, we can show that
∑t

i=1 ei ≤ 3t, so the time to insert T is
O

(
t(log n + tSA)

)
= O(t log2 n). Note that once the list of balanced parentheses,

CSA, FM-index and LCP are updated, the data structures represent the updated
suffix tree. In particular, the edge labels are updated automatically.

When we delete a text T from L, we delete all suffixes of T from the suffix tree
starting from the longest one. We first locate the leaf for the suffix T [1, t] and then
reverse the steps of insertion. It takes O(t log2 n) time to delete all suffixes of T .

4.2 Dynamic Dictionary Matching

This section completes the proof for Theorem 1.2, where we show an index of O(d)
bits that maintains a collection D of patterns of total length d, with characters
drawn from a constant-size alphabet Σ. In addition, the index supports inserting
or deleting a pattern of length p in O(p log2 d) time, and a dictionary matching query
that searches for all patterns in an arbitrary given text T [1, t] can be performed in
O

(
(t + occ) log2 d

)
time.

We follow the idea of Amir et al. [1995], and instead of using a generalized suffix
tree, we maintain a compressed suffix tree for the collection of patterns. Dictionary
matching query is basically done by a traversal on the suffix tree based on T . As
required by the solution of Amir et al. [1995], we also maintain a data structure
which, for any internal node u of the suffix tree, reports all patterns in D that are
prefix to the path label of u. This is useful for reporting occurrences of patterns
when we deduce that the path label of u is matching some part of T . To do so, we
intuitively mark all the internal nodes of the suffix tree whose path label matches
a pattern in D. Then, to report patterns that are prefix to the path label of u,
we report all the marked nodes on the path from u to the root. This marked
tree structure can be represented by a list of the balanced parentheses [Amir et al.
1995], and maintained based on Lemma 4.2. To report occurrences of all patterns
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in T , it takes O(t log2 d) time to traverse the compressed suffix tree and it takes
O(occ log2 d) time to report the occ occurrences. Since both the compressed suffix
tree and the list of parentheses allow efficient updates, we obtain a compact solution
for the dynamic dictionary matching problem as stated in Theorem 1.2.

5. PARENTHESES MAINTENANCE

In this section, we give details of two compressed data structures for maintain-
ing a list of n pairs of balanced parentheses. The first one is an O(n)-bit data
structure that supports finding the matching parenthesis and the nearest enclos-
ing parentheses, and updating in O(log n/ log log n) time. The second one is an
O(n)-bit data structure that supports finding the nearest enclosing parentheses for
two given parentheses, calculating the rank leaf () and select leaf () operations, and
updating in O(log n) time. Together, they prove Lemma 4.2 stated in Section 4.
Finally, we show a reduction from the classical set maintenance problem support-
ing the rank and select operations to the parentheses maintenance problem, thus
obtaining a lower bound result on the latter problem.

5.1 Finding the Matching and Nearest Enclosing Parentheses

Given a list of n pairs of balanced parentheses, our first data structure maintains
it by dividing the list into segments of length log2 n/ log log n to 2 log2 n/ log log n.
The segments are stored in leaves of a B-tree such that concatenating the leaves
from left to right gives back the original list of parentheses. Each internal node of
the B-tree has 1

2

√
log n to

√
log n children. For each internal node, as the number of

children is small, we can build a searchable partial sum data structure [Raman et al.
2001] on information of the children, which allows a number of queries and updates
in constant time. As a result, finding the matching and nearest enclosing parenthe-
ses takes time proportional to the height of the tree, which is O(log n/ log log n).
Details are as follows.

We first note that finding the matching parenthesis can easily be reduced to
finding the nearest enclosing parentheses. Suppose that we are given an open
parenthesis x.8 To find its matching parenthesis, we first check if the parenthesis
immediately right to x, that is x + 1, is a closing one. If yes, x + 1 is the required
matching parenthesis. Otherwise, the matching parenthesis can be found by finding
the nearest enclosing parentheses for x+1. Finding the matching parenthesis for a
given closing parenthesis is similar. In the following, we only focus on the problem
of finding the nearest enclosing parentheses.

Recall that we store the parentheses by segments in the leaves of a B-tree. For
an internal node u, we store seven arrays of information about the children of u.
The first array size[i] stores the number of parentheses in the subtree rooted at the
i-th child of u. Among these parentheses, close[i] stores the number of unmatched
closing parentheses, i.e., number of closing parentheses whose matching one is not
in the subtree rooted at the i-th child of u. These unmatched closing parentheses
are further divided into two types: Those with matching parentheses located in a
subtree rooted at some other child of u (called near-unmatched closing parentheses);

8We refer to a parenthesis in the list by its index such that parenthesis x is the x-th parenthesis
counting from the left to right.
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and those with matching parentheses located outside the tree rooted at u (called far-
unmatched closing parentheses). We store the numbers of such closing parentheses
for the i-th child as near close[i] and far close[i], respectively. The three remaining
arrays, namely the open[i], near open[i] and far open[i], which correspond to the
open parentheses instead, are defined similarly. We fix the length of each array to
be
√

log n, and if the node has less than
√

log n children, the last few entries of the
arrays are set to zero.

To support efficient queries on the size array, we construct a searchable partial
sum data structure [Raman et al. 2001] for the array. Precisely speaking, for a
sequence S = s1, s2, . . . of integers, a searchable partial sum data structure supports
the following operations.

—sum(k): Returns
∑k

i=1 si.
—search(x): Returns min

{
k

∣∣ sum(k) ≥ x
}
.

—update(k, y): Updates sk to sk + y, for some integer y ≤ log n.

The following lemma summarizes the performance of the searchable partial sum
data structure.

Lemma 5.1 [Raman et al. 2001]. On a RAM with a word size of log n bits,
we can maintain a searchable partial sum data structure for a sequence of logε n
non-negative integers, for any fixed 0 ≤ ε < 1, with integer size log n bits, such
that the data structure uses O(log1+ε n)-bit space and supports the sum, search and
update operations in O(1) time. It also requires a precomputed table of size O(nε′)
bits for any fixed ε′ > 0.

We build a searchable partial sum data structure for each of the seven arrays.

Finding the nearest enclosing parentheses. Given a parenthesis i, it takes
three steps to find the nearest open parenthesis enclosing i.

(1) We first traverse down the tree to locate the leaf containing i. Note that to find
the x-th parenthesis in the subtree rooted at a node u, we only need a query
search(x) on the size array, which returns the child of u containing the x-th
parenthesis. Thus, traversing from the root to the leaf containing parenthesis i
takes time proportional to the height of the B-tree, which is O(log n/ log log n).
Once we arrive at the leaf, we scan the leaf to search for nearest open parenthesis
enclosing i, if it exists. This can be done in O(log n/ log log n) time as the leaf
contains at most 2 log2 n/ log log n parentheses, and in the RAM model, we can
check O(log n) bits in constant time.

(2) If no open parenthesis enclosing i is found in the first step, we traverse up
the tree to search for the smallest subtree that contains the the nearest open
parenthesis enclosing i. We maintain an invariance that whenever we move
from a node u to the parent of u, denoted as p(u), we know the number
of unmatched closing parentheses in the subtree rooted at u from left up to
the position i (inclusive). With this information, we can determine in con-
stant time whether the nearest open parenthesis enclosing i is in the subtree
rooted at p(u), as follows: Let u be the k-th child of p(u), and assume that
in the subtree rooted at u, there are x unmatched closing parentheses from
left up to the position i. Then, among the parentheses in the subtree rooted
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at p(u), there is a near-unmatched open parenthesis enclosing i if and only
if

∑k−1
j=1 near open[j] −∑k−1

j=1 near close[j ] − x > 0; otherwise, there is a far-

unmatched open parenthesis enclosing i if and only if
∑k−1

j=1 far open[j] > 0.
With the searchable partial sum data structures, both cases can be checked in
constant time.

If neither case succeeds, there is no open parenthesis in p(u) enclosing i. Then,
we traverse up to parent of p(u) continuously. Note that for the subtree rooted
at p(u), the number of unmatched closing parentheses from left up to position i

equals
∑k−1

j=1 far close[j ] + max
{
x − near close[k], 0

}
. Thus, we can maintain

the invariance in constant time.

(3) At the end of the previous step, we arrive at a node p(u) that contains the
nearest open parenthesis enclosing i. (Also, recall that u is the k-th child of
p(u), which is the node containing i, and x is the number of unmatched closing
parentheses in u that precedes i.) We scan the open and close arrays of p(u),
starting from their (k−1)-th entries (that is, open[k−1] and close[k−1]), and we
stop as soon as we find q such that

∑k−1
j=q open[j]−∑k−1

j=q+1 close[j]−x > 0. It is
easy to check that the q-th child of p(u) contains the required parenthesis. The
above process takes O(

√
log n ) time, as the arrays are of length

√
log n. Then,

we traverse down from p(u) to its q-th child, and we maintain an invariance
that whenever we move from some node to its child v, we know the number of
unmatched open parentheses in the subtree rooted at v that are on the right of
the required parenthesis. This invariance, together with the searchable partial
sum data structure, allows us to determine in constant time which child of v
contains the nearest open parenthesis enclosing i. Also, this invariance can be
maintained in constant time when we move from v to a child of v. Finally, when
we arrive at a leaf, we scan the leaf for the required enclosing parenthesis. The
whole process takes O(log n/ log log n) time.

Updating the parentheses. Inserting a pair of matching parentheses is done
by first locating the leaves containing the new open and closing parentheses. We
update the involved leaves in O(log n/ log log n) time. Then, we traverse up the tree
and update the internal nodes on the path from the involved leaves to the root. Each
such internal node can be updated in constant time as we only increment at most
two entries in each of the seven arrays, and the searchable partial sum data structure
allows constant time increment. The whole process takes time proportional to the
height of the tree, which is O(log n/ log log n). Deleting a pair of parentheses can
be done similarly.

Space complexity. For the space complexity of the data structure, we notice
that the total space requirement due to the leaves is O(n) bits. There are at
most n/(log2 n/ log log n) = n log log n/ log2 n leaves, so that there are at most
2n log log n/ log2.5 n internal nodes. Each internal node requires O(log1.5 n) space.
Thus, the space requirement due to the internal nodes is O(n log log n/ log n) = o(n)
bits.
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5.2 Finding the Double-Enclose Parentheses, rank leaf (), and select leaf ()

Our second data structure maintains the list of parentheses by dividing it into
segments of length log n to 2 log n. The segments are stored as leaves of a red-black
tree such that concatenating the leaves from left to right gives back the original list
of parentheses. For each internal node, we store information about its two children,
so finding the double-enclose parentheses takes time proportional to the height of
the red-black tree, which is O(log n). Details are as follows.

Let excess(`, i) be the number of open parentheses minus the number of closing
parentheses in the range [`, i]. For a range [`, r], we say min excess(`, r) = i0 , if for
` ≤ i ≤ r, excess(`, i) is minimized when i = i0. The nearest enclosing parentheses
for both ` and r is the nearest enclosing parentheses for min excess(`, r). Thus,
based on the result in Section 5.1, finding double enclose(`, r) is reduced to finding
min excess(`, r).

Furthermore, for any b in [`, r], min excess(`, r) is either min excess(`, b) or
min excess(b + 1, r). Precisely, let i′0 and i′′0 denote the former term and latter
term. Then, min excess(`, r) is i′0 if excess(`, i′0) ≤ excess(`, b) + excess(b + 1, i′′0),
and it is i′′0 otherwise.

Based on this observation, we store extra information in red-black tree to allow
efficient calculation of the function min excess. Precisely, for each internal node u,
let lp(u) and rp(u) be the leftmost and rightmost parentheses in the subtree rooted
at u; we store two values i and excess(lp(u), i), where i is min excess(lp(u), rp(u)).
Furthermore, we store excess(lp(u), rp(u)) and also the number of parentheses in
the subtree rooted at u.

Finding the double enclosing parentheses. Given two parentheses ` and r,
to find the parentheses enclosing both ` and r, we first find min excess(`, r). We
locate the parentheses ` and r by traversing from the root to the corresponding
leaves. Let u be the lowest common ancestor of the two leaves and let x and y be
the left child and right child of u, respectively. Note that ` is in the subtree rooted
at x while r is in the subtree rooted at u. Let i′0 be min excess(`, rp(x)). Our
target is to find the value of i′0, excess(`, i′0) and excess(`, rp(x)) when we traverse
from the leaf containing ` to x. Similarly, let i′′0 be min excess(lp(y), r). We want
to find the value of i′′0 , excess(lp(y), i′′0) when we traverse from the leaf containing
r to y. Together, we can find min excess(`, r).

We will calculate the following three values for each node v on the path from the
leaf containing ` to x: (1) min excess(`, rp(v)) (denoted as min(v) for simplicity),
(2) excess(`,min(v)), and (3) excess(`, rp(v)). Note that at the leaf containing `, the
three required values are found by scanning the parentheses in the leaf. Assume that
we already know the three required values for node a. Let b be the parent of a. If a is
the right child of b, then the three required values of b are just the same as that of a.
Otherwise, let c be the right child of b and let ic be min excess(lp(c), rp(c)). Then,
min(b) = min(a) if excess(`,min(a)) ≤ excess(`, rp(a)) + excess(lp(c), ic), and
min(b) = ic otherwise. Once min(b) is known, excess(`,min(b)) can be calculated,
and we can also obtain excess(`, rp(b)) = excess(`, rp(a)) + excess(lp(c), rp(c)).
Thus, we calculate the values in a bottom up manner until arriving at x. Calculating
the values for y is similar. The whole process takes time proportional to the height
of the tree, which is O(log n).
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Calculating rank leaf () and select leaf (). Recall that for a list of balanced
parenthesis, a pair of consecutive matching parentheses is called a leaf. The oper-
ation rank leaf (i) counts the number of leaves from the beginning of the list up to
location i, while the operation select leaf (j) finds the j-th leaf in the list.

To support the two operations efficiently, we add a little modification to our data
structure, requiring that a pair of consecutive matching parentheses must be stored
in the same segment in one leaf of the red-black tree. Also, in each internal node u,
we store an integer counting the number of consecutive matching parentheses in
the subtree rooted at u. Thus, the rank leaf (i) operation can be done easily by
traversing from root to parentheses i, taking O(log n) time. The select leaf (j)
operation can be done similarly in O(log n) time.

Finally, we observe that inserting or deleting a pair of matching parentheses can
be done in time proportional to the height of the red-black tree, which is O(log n).
Also, the total space requirement of the red-black tree is O(n) bits.

5.3 Reduction From Set Maintenance to Parenthesis Maintenance

The classical problem of maintaining a subset of integers, while supporting rank and
select operations, is as follows. Given a universe U = [1, n], we want to maintain
a subset S of items from U so that item can be inserted to or deleted from S. In
addition, we want to support two queries, rank and select , such that

—rank(i,S) returns the number of items in S which is at most i;
—select(j,S) finds the j-th smallest item in S.

The above problem can be reduced to the parentheses maintenance problem by a
simple local replacement. For any i in S, it is represented by two open parentheses
‘((’, and for any i not in S, it is represented by the parentheses ‘()’. The parentheses
sequence for S, called B, is represented by writing down the representation for each
i in [1, n] in ascending order, where at the end, we append |S| copies of ’))’ to make
the parentheses sequence balanced.

The sequence B consists of q = n + |S| pairs of matching parentheses. Observe
that each element i of U is corresponding to the parentheses at positions 2i−1 and
2i. For the j-th smallest element in S, the two matching closing parentheses are
located at position 2q − 2j + 1 and position 2q − 2j + 2.

Based on the above observation, rank(i,S) can be done by first finding the largest
element imax in S that is less than i + 1; afterwards, we compute the rank of imax

in S, which is the desired answer. Details are as follows.

(1) Perform enclose(2i + 1) to find the nearest pair of matching parentheses (`, r)
that encloses p.

(2) The rank of of imax in S is (2q − r + 1)/2.

For select(j,S), we first find the ‘))’ corresponding to the j-th smallest element
in S. Then, the location of the two matching parentheses ’((’ tells what is the value
of that element. Details are as follows.

(1) Calculate ` = find match(2q − 2j + 1).
(2) Report `/2.
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Finally, to insert an element i in S, it corresponds to changing B by deleting the
matching parentheses at positions 2i− 1 and 2i, followed by adding two matching
parentheses at (2i − 1, 2q − 2j + 2) and (2i, 2q − 2j + 1), where q is the length of
B and j is the rank of i in S. Similarly, deleting an element i from S is done by
reversing the above steps. This completes the proof of the reduction.

Fredman and Saks [1989] showed that in the cell probe model [Yao 1981],9 to
maintain a subset of [1, n] supporting rank query and update, there exists a se-
quence of k operations of queries and updates such that the total time required is
Ω(k log n/ log log n). This implies the following theorem.

Theorem 5.2. For any data structure for the parentheses maintenance, there
exists a sequence of operations requiring Ω(log n/ log log n) amortized time per op-
eration.

6. CONCLUSION AND FURTHER WORK

We have shown a compressed solution to the library management problem, which
requires O(n) bits for a text collection L of total length n, such that inserting or
deleting a text T in L takes O(|T | log n) time; also, the index supports searching
the occurrences of any pattern P in all texts in L in O(|P | log n + occ log2 n) time
where occ is the number of occurrences.

We have also shown a compressed solution to the dictionary matching problem,
which requires O(d) bits for a pattern collection D of total length d, such that
inserting or deleting a pattern P in D takes O(|P | log2 n) time; also, the index
supports searching the occurrences of all patterns of D in any text T in O

(
(|T | +

occ) log2 d
)

time.
One interesting problem to further pursue is to reduce the update and query

times, ideally removing the polylog(n) or polylog(d) factor, so as to match the
optimal linear time achieved by the non-compact solutions of Sahinalp and Vishkin
[1996].

Another open problem concerns the dynamic text problem, which maintains a
single text T supporting efficient pattern searching query, while from time to time,
substrings are inserted to or deleted from T : Can we obtain an index for T in
O(|T |) bits, such that inserting or deleting a substring of length s can be done in
O(s × polylog(|T |)) time, while searching a pattern of length p is done in O((p +
occ)polylog(|T |)) time?

APPENDIX

A. IMPLEMENTATION OF MARK

Recall that MARK is a set of at most n/ log n tuples, each in the format of
(
i, (j, k)

)
.

Note that no two tuples have the same i-value, but there may be more than one
tuple having the same j-value.

To support efficient update, we maintain two red-black trees, one for the i-values
and the other for the (j, k)-values as follows.

9In the cell probe model, the time complexity of a sequential computation is defined to be the
number of words of memory that are accessed. The lower bound time complexity derived is
stronger than that in the RAM model.

ACM Journal Name, Vol. V, No. N, Month 20YY.



28 · Ho-Leung Chan et al.

For all the i-values of the tuples, they are stored in a red-black tree Ri, such that
the left to right traversal of the tree gives the i-values of the tuples in sorted order.

For all the j-values of the tuples (allowing duplication), they are stored in a red-
black tree, denoted as Rj , such that the left to right traversal of the tree gives the
j-values of all the tuples in sorted order.

Let i(u) be the i-value stored in the node u in Ri. Let j(v) be the j-value stored
in the node v in Rj . To represent the tuples, we store a pointer for each node u
in Ri, pointing to the node v in Rj if i(u) and j(v) belongs to the same tuple.
Furthermore, the k-value of the corresponding tuple (i(u), (j(v), k)) is stored in the
node v in Rj .

More precisely, each node in Ri has the following fields.

—A color bit (red or black), a pointer to the left child and a pointer to the right
child.

—An integer diff (u) = i(u)− i(lp(u)), where lp(u) denotes the first parent on the
left when we go up from u to the root, and i(lp(u)) = 0 if lp(u) does not exist.

—A pointer to a node v in Rj .

Each node in Rj has the following fields.

—A color bit (red or black), a pointer to the left child and a pointer to the right
child.

—An integer diff (v) = j(v)− j(lp(v)), where lp(v) denotes the first parent on the
left when we go up from u to the root, and j(lp(v)) = 0 if lp(v) does not exist.

—A pointer to a node u in Ri.
—An integer k.

Although we do not store the value i(u) explicitly for every node u in Ri, its
value can be recovered when we traverse down the tree Ri starting from the root.
The idea is that, when we traverse down the tree, for every node x we meet on the
path, we can compute the values lp(x) and i(x) in constant time along the way as
follows. Let x′ be the parent of x and assume inductively that lp(x′) and i(lp(x′))
are known. If x is the left child of x′, lp(x) = lp(x′). Else, lp(x) = x′. In both
cases, i(x) = i(lp(x)) + diff (x).

Note that Ri and Rj are very similar to a red-black tree and they inherit the
advantages of a balanced binary search tree. Searching, inserting and deleting a
tuple can be done easily in O(log n) time. For any integer `, let X` =

{
u

∣∣ u ∈
Ri and i(u) ≥ `

}
. To support the function Shift up(`), we need to increment i(u)

by one for each u in X`. Recall that the actual value of i(u) is not stored in the
node u. Instead, we store diff (u) = i(u) − i(lp(u)). Thus, if the value i(lp(u)) is
incremented, the value i(u) is also incremented automatically. Precisely speaking,
to increment i(u) by one for all u in X`, we search Ri for the node x with smallest
i(x) such that i(x) ≥ `. Then, for any node w not equal to x on the path from root
to x, we increment the value diff (w) by one if w is a right parent of some other
node on the path. We also increment diff (x) by one. It is easy to see that that i(u)
is incremented by one for all u in X`. Thus, operation Shift up(`) can be done in
O(log n) time.
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The other operations, Shift down, Increment lexico and Decrement lexico are
supported similarly in O(log n) time. This completes the discussion for MARK .

B. IMPLEMENTATION OF PSI

The PSI data structure has been used in the space-efficient CSA construction
algorithm by Lam et al. [2002]. In their paper, PSI was used as a dynamic repre-
sentation of Ψ, allowing the CSA of a text T [1, n] to be constructed incrementally
in n phases where phase i modifies the Ψ of T [n− i + 1, n] slightly to become Ψ of
T [n− i, n].

The main idea is to maintain Ψ as |Σ| increasing sequences, one for each c in Σ.
Each sequence, say v1, v2, . . . , vk, is represented by a sequence of difference values
vi − vi−1, encoded by gamma code [Elias 1975] to save space. The gamma-coded
sequence is partitioned into chunks of O(log n) bits, which are stored as nodes in a
red-black tree (in a way similar to Ri in Appendix A). The height of the red-black
tree is O(log n). With the aid of an o(n)-bit decoding table, reporting a Ψ value,
or updating with Insert or Delete can be done in O(log n) time in the RAM. For
Shift up or Shift down, they can also be performed in O(log n) time due to the
‘differential’ nature of how the sequence is stored. The total space is O(n log |Σ|)
bits, which is O(n) bits for constant-size alphabet.
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