CS 2336
Discrete Mathematics

Lecture 8
Counting: Permutations and Combinations
Outline

• Definitions
• Permutation
• Combination
• Interesting Identities
Definitions

• **Selection** and **arrangement** of objects appear in many places

 ➤ We often want to compute # of ways to select or arrange the objects

• Examples:
 1. How many ways to **select** 2 people from 5 candidates?
 2. How many ways to **arrange** 7 books on the bookshelf?
Definitions

• In most textbooks, we use the word
 combination \Leftrightarrow selection

An **r-combination of n objects** is an unordered
selection of r objects from the n objects

• Example :

 \{ c, d \} is a 2-combination of \{ a, b, c, d, e \}
Definitions

• In most textbooks, we use the word permutation \iff arrangement

An **r-permutation of n objects** is an ordered arrangement of r objects from the n objects

• Example:

 cabd is a 4-permutation of \{ a, b, c, d, e \}
Definitions

• Further, we define the following notation:

\[C(n, r) \] denotes the number of \(r \)-combinations of \(n \) distinct objects

\[P(n, r) \] denotes the number of \(r \)-permutations of \(n \) distinct objects

• What are the values of \(C(n, n) \), \(C(n, 1) \), \(C(3, 2) \), and \(P(3, 2) \) ?
Test Your Understanding

• Why are the following equalities correct?

1. \(P(n, r) = P(r, r) \times C(n, r) \)
2. \(P(n, n) = P(n, r) \times P(n - r, n - r) \)
3. \(C(n, r) = C(n, n - r) \)
Permutation

• In fact, there is a formula for $P(n, r)$:

$$P(n, r) = n (n - 1)(n - 2) \ldots (n - r + 1)$$

• Proof:

$P(n, r) = \# \text{ ways to get } r \text{ of } n \text{ objects in some order.}$

There are n ways to choose the 1st object, $n - 1$ ways to choose the 2nd object, \ldots, $n - r + 1$ ways to choose the rth object

\rightarrow Result follows from rule of product
Examples

• Ex 1: How many ways to select a first-prize, a second-prize, and a third-prize winners from 100 different people?

• Ex 2: How many ways can n people be ordered to form a ring?

The above are considered the same (as relative order is the same)
With Indistinguishable Objects

• How many different strings can be made by re-ordering the letters of the word “SUCCESS”?

• Answer:
 First, suppose that all the 7 letters are distinct. Then, there will be $7!$ different strings.
 Now, if we make the two Cs indistinguishable, we will only have $7!/2!$ different strings.
 Further, if the three Ss are indistinguishable, the number of different strings becomes $(7!/2!)/3!$.
With Indistinguishable Objects

• In general, if there are n objects, with
 \(n_1 \) indistinguishable objects of type 1,
 \(n_2 \) indistinguishable objects of type 2,
 … ,
 \(n_k \) indistinguishable objects of type k,

\[\text{the number of n-permutations is:} \]

\[\frac{n!}{n_1! \ n_2! \ \ldots \ n_k!} \]
Examples

• If we have 5 dashes and 8 dots, how many different ways to arrange them?

 . . . _ _ _ _ _ .

• If we can only use 7 symbols of them, how many different arrangements are there?

 . _ . _ . _ . _ _
Examples

• Show that for any positive integer k,

$$(k!)! \text{ is divisible by } k! \frac{(k-1)!}{k!}.$$

• For instance, when $k = 3$,

$$(k!)! = (3!)! = 6! = 720$$

$k! \frac{(k-1)!}{k!} = (3!)^2 = 6^2 = 36$
With Unlimited Repetitions

• Suppose that there are n distinct objects, each with unlimited supply

• How many r-permutations are there? That is, how many ways to get a total of r objects from them, and then form an arrangement?

• Answer: n^r
Examples

• Ex 1 : Consider all numbers between 1 and 10^{10}
 (i) How many of them contain the digit 1 ?
 (ii) How many of them do not ?

• Ex 2 :
 (i) How many bit strings of length n are there ?
 (ii) How many contain even number of 0s?
Combination

• Recall that

\[P(n, r) = P(r, r) \times C(n, r) \]

• Thus, we have

\[C(n, r) = \frac{n (n - 1)(n - 2) \ldots (n - r + 1)}{r!} \]

• Alternatively, we can express \(C(n, r) \) as:

\[C(n, r) = \frac{n!}{(n - r)! \ r!} \]
Examples

• Consider a hexagon where no three diagonals meet a one point

• How many diagonals are there?
• How many intersections between the diagonals?
• How many line segments are the diagonals divided by their intersections?
Examples

• In how many ways can we select 3 numbers from 1, 2, ..., 300, such that their sum is a multiple of 3?

• Hint:
 When the sum is a multiple of 3, what special property does the 3 numbers have?

• Answer: $100^3 + 3 \times C(100, 3)$
Examples

• Five pirates have discovered a treasure box
 They decided to keep the box in a locked room, so that all the locks of the room can be opened if and only if 3 or more pirates are present
• How to do so? How many locks do they need? (Each pirate may possess keys to different locks)
With Unlimited Repetitions

• Suppose that there are n distinct objects, each with unlimited supply

• How many r-combinations are there? That is, how many ways to get a total of r objects from them, and the ordering is not important?

• Answer: \(C(n - 1 + r, r) \) [Why?]
With Unlimited Repetitions

• Imagine we have a box for each type of objects

1 2 3 \ldots n

• A particular r-combination is equivalent to throwing a total of r balls into these boxes

1 2 3 \ldots n
With Unlimited Repetitions

• To represent one of the r-combination, we may use a list of n – 1 bars and r stars, where
 ➢ the bars are used to mark off n different boxes
 ➢ the stars are used to indicate how many balls in each box

• For instance, suppose n = 5, r = 6

```
1 2 3 4 5
```

```
* * | * | | | * * *
```
With Unlimited Repetitions

• Using the bars-and-stars representation, we see that
 ➢ each r-combination corresponds to a unique representation (with \(n - 1 \) bars and r stars), and
 ➢ each representation (with \(n - 1 \) bars and r stars) corresponds to a unique r-combination

⇒ \# of r-combinations = \# of representations

= \(C(n - 1 + r, r) \)
Examples

• Ex 1 : Suppose that a cookie shop has four different kinds of cookies. How many different ways can 6 cookies be chosen?

• Ex 2 : How many solutions does the equation

\[x + y + z = 11 \]

have, if \(x, y, z \) are non-negative integers?

• Ex 3 : What if \(x, y, z \) are positive integers in Ex 2?
Interesting Identities

Pascal’s Identity:
\[C(n, r) = C(n - 1, r) + C(n - 1, r - 1) \]

• Proof (by combinatorial arguments):
 To select \(r \) of \(n \) objects, there are in two cases:
 1. Get the first object, and then get \(r - 1 \) objects from the remaining \(n - 1 \) objects;
 2. Do not get the first object, and get \(r \) objects from the remaining \(n - 1 \) objects

\[\Rightarrow \text{In total, } C(n - 1, r - 1) + C(n - 1, r) \text{ ways} \]
Interesting Identities

Binomial Theorem:

\[(x + y)^n = \sum_{r=0}^{n} C(n, r) x^{n-r} y^r\]

• Proof (by combinatorial arguments):
 The terms in \((x + y)^n\) must be of the form \(x^{n-r} y^r\).
 To obtain the term \(x^{n-r} y^r\), \(x\) is chosen \(n - r\) times from the \(n\) occurrences of \((x + y)\) in the product, so that \(y\) will be automatically chosen \(r\) times
 \(\Rightarrow\) the number of ways is exactly \(C(n, r)\)
Examples

• Ex 1 : What is the expansion of \((x + y)^4\) ?

• Ex 2 : What is the coefficient of \(x^{12}\) in \((2x - 3y)^{25}\) ?

• Ex 3 : What is the value of \(\sum_{r=0}^{n} C(n, r)\) ?

• Ex 4 : What is the value of \(\sum_{r=0}^{n} (-1)^r C(n, r)\) ?

• Ex 5 : What is the value of \(\sum_{r=0}^{n} 2^r C(n, r)\) ?
Interesting Identities

Vandermonde’s Identity :

\[C(m + n, r) = \sum_{k=0}^{r} C(m, r - k) C(n, k) \]

• Proof (by combinatorial arguments):

To select \(r \) items from \(m + n \) distinct objects, we may assume that among these objects, \(m \) are white and \(n \) are black. The selection may start by selecting \(k \) black objects, and then the remaining from white objects. As \(k \) can vary from 0 to \(r \), this gives the result.
Example

• Can you simplify $\sum_{k=0}^{n} C(n, k)^2$?

• Answer:

Observe that

$$\sum_{k=0}^{n} C(n, k)^2 = \sum_{k=0}^{n} C(n, n-k) C(n, k)$$

By setting $m = n$ and $r = n$ in Vandermonde’s identity, we get the desired value as $C(2n, n)$